1
|
Yoshida K, Saucerman JJ, Holmes JW. Multiscale model of heart growth during pregnancy: integrating mechanical and hormonal signaling. Biomech Model Mechanobiol 2022; 21:1267-1283. [PMID: 35668305 DOI: 10.1007/s10237-022-01589-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/01/2022] [Indexed: 12/01/2022]
Abstract
Pregnancy stands at the interface of mechanics and biology. The growing fetus continuously loads the maternal organs as circulating hormone levels surge, leading to significant changes in mechanical and hormonal cues during pregnancy. In response, maternal soft tissues undergo remarkable growth and remodeling to support the mother and baby for a healthy pregnancy. We focus on the maternal left ventricle, which increases its cardiac output and mass during pregnancy. This study develops a multiscale cardiac growth model for pregnancy to understand how mechanical and hormonal cues interact to drive this growth process. We coupled a cell signaling network model that predicts cell-level hypertrophy in response to hormones and stretch to a compartmental model of the rat heart and circulation that predicts organ-level growth in response to hemodynamic changes. We calibrated this multiscale model to data from experimental volume overload and hormonal infusions of angiotensin 2 (AngII), estrogen (E2), and progesterone (P4). We then validated the model's ability to capture interactions between inputs by comparing model predictions against published observations for the combinations of VO + E2 and AngII + E2. Finally, we simulated pregnancy-induced changes in hormones and hemodynamics to predict heart growth during pregnancy. Our model produced growth consistent with experimental data. Overall, our analysis suggests that the rise in P4 during the first half of gestation is an important contributor to heart growth during pregnancy. We conclude with suggestions for future experimental studies that will provide a better understanding of how hormonal and mechanical cues interact to drive pregnancy-induced heart growth.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W Holmes
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
More AS, Mishra JS, Hankins GD, Kumar S. Prenatal Testosterone Exposure Decreases Aldosterone Production but Maintains Normal Plasma Volume and Increases Blood Pressure in Adult Female Rats. Biol Reprod 2016; 95:42. [PMID: 27385784 PMCID: PMC5029475 DOI: 10.1095/biolreprod.116.141705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Plasma testosterone levels are elevated in pregnant women with preeclampsia and polycystic ovaries; their offspring are at increased risk for hypertension during adult life. We tested the hypothesis that prenatal testosterone exposure induces dysregulation of the renin-angiotensin-aldosterone system, which is known to play an important role in water and electrolyte balance and blood pressure regulation. Female rats (6 mo old) prenatally exposed to testosterone were examined for adrenal expression of steroidogenic genes, telemetric blood pressure, blood volume and Na+ and K+ levels, plasma aldosterone, angiotensin II and vasopressin levels, and vascular responses to angiotensin II and arg8-vasopressin. The levels of Cyp11b2 (aldosterone synthase), but not the other adrenal steroidogenic genes, were decreased in testosterone females. Accordingly, plasma aldosterone levels were lower in testosterone females. Plasma volume and serum and urine Na+ and K+ levels were not significantly different between control and testosterone females; however, prenatal testosterone exposure significantly increased plasma vasopressin and angiotensin II levels and arterial pressure in adult females. In testosterone females, mesenteric artery contractile responses to angiotensin II were significantly greater, while contractile responses to vasopressin were unaffected. Angiotensin II type-1 receptor expression was increased, while angiotensin II type-2 receptor was decreased in testosterone arteries. These results suggest that prenatal testosterone exposure downregulates adrenal Cyp11b2 expression, leading to decreased plasma aldosterone levels. Elevated angiotensin II and vasopressin levels along with enhanced vascular responsiveness to angiotensin II may serve as an underlying mechanism to maintain plasma volume and Na+ and K+ levels and mediate hypertension in adult testosterone females.
Collapse
Affiliation(s)
- Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Gary D Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Sathish Kumar
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
3
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|
4
|
Al-Saeedi FJ, Cheng B. Choline treatment affects the liver reticuloendothelial system and plasma fatty acid composition in diabetic rats. Clin Physiol Funct Imaging 2013; 33:293-301. [DOI: 10.1111/cpf.12027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 12/27/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Fatma J. Al-Saeedi
- Nuclear Medicine; Faculty of Medicine; Kuwait University; Kuwait City; Kuwait
| | - Behling Cheng
- Biochemistry Departments; Faculty of Medicine; Kuwait University; Kuwait City; Kuwait
| |
Collapse
|
5
|
Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301:R905-15. [PMID: 21632848 DOI: 10.1152/ajpregu.00800.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.
Collapse
Affiliation(s)
- Andre S Mecawi
- Faculty of Medicine of Ribeirao Preto, Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Cornock R, Langley-Evans SC, Mobasheri A, McMullen S. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins. Reprod Biol Endocrinol 2010; 8:105. [PMID: 20807409 PMCID: PMC2940793 DOI: 10.1186/1477-7827-8-105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/31/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The study focused on expression of renal angiotensin receptors (ATR) and vasopressin-related aquaporins (AQP), hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and with compromised plasma volume expansion in rats fed a low-protein diet. METHODS Female Wistar rats were mated and fed a control (18% casein) or low-protein (9% casein) diet during pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point) for determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle. RESULTS As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin II receptors and aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of AT2R protein expression was observed in low-protein fed animals alongside a decrease in creatinine clearance. CONCLUSION Regulatory systems involved in the pregnancy-induced plasma volume expansion are susceptible to the effects of maternal protein restriction.
Collapse
Affiliation(s)
- Ruth Cornock
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Simon C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ali Mobasheri
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sarah McMullen
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
7
|
|
8
|
Gomes DA, Song Z, Stevens W, Sladek CD. Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors. Am J Physiol Regul Integr Comp Physiol 2009; 297:R940-9. [PMID: 19625689 DOI: 10.1152/ajpregu.00358.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coexposure of hypothalamo-neurohypophyseal system explants to ATP and phenylephrine [PE; an alpha1-adrenergic receptor (alpha1-AR) agonist] induces an extended elevation in vasopressin and oxytocin (VP/OT) release. New evidence is presented that this extended response is mediated by recruitment of desensitization-resistant ionotropic purinergic receptor subtypes (P2X-Rs): 1) Antagonists of the P2X2/3 and P2X7-Rs truncated the sustained VP/OT release induced by ATP+PE but did not alter the transient response to ATP alone. 2) The P2X2/3 and P2X7-R antagonists did not alter either ATP or ATP+PE-induced increases in [Ca(2+)](i). 3) P2X2/3 and P2X7-R agonists failed to elevate [Ca(2+)](i), while ATP-gamma-S, an agonist for P2X2-Rs increased [Ca(2+)](i) and induced a transient increase in VP/OT release. 4) A P2Y1-R antagonist did not prevent initiation of the synergistic, sustained stimulation of VP/OT release by ATP+PE but did reduce its duration. Thus, the desensitization-resistant P2X2/3 and P2X7-R subtypes are required for the sustained, synergistic hormone response to ATP+PE, while P2X2-Rs are responsible for the initial activation of Ca(2+)-influx by ATP and ATP stimulation of VP/OT release. Immunohistochemistry, coimmunoprecipitation, and Western blot analysis confirmed the presence of P2X2 and P2X3, P2X2/3, and P2X7-R protein, respectively in SON. These findings support the hypothesis that concurrent activation of P2X2-R and alpha1-AR induces calcium-driven recruitment of P2X2/3 and 7-Rs, allowing sustained activation of a homeostatic circuit. Recruitment of these receptors may provide sustained release of VP during dehydration and may be important for preventing hemorrhagic and septic shock.
Collapse
Affiliation(s)
- Dayane A Gomes
- Department of Physiology and Biophysics, University of Colorado Denver School of Medicine, Denver, Colorado 80045, USA
| | | | | | | |
Collapse
|
9
|
Doperalski NJ, Sandhu MS, Bavis RW, Reier PJ, Fuller DD. Ventilation and phrenic output following high cervical spinal hemisection in male vs. female rats. Respir Physiol Neurobiol 2008; 162:160-7. [PMID: 18586119 DOI: 10.1016/j.resp.2008.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 02/02/2023]
Abstract
Female sex hormones influence the neural control of breathing and may impact neurologic recovery from spinal cord injury. We hypothesized that respiratory recovery after C2 spinal hemisection (C2HS) differs between males and females and is blunted by prior ovariectomy (OVX) in females. Inspiratory tidal volume (VT), frequency (fR), and ventilation (VE) were quantified during quiet breathing (baseline) and 7% CO2 challenge before and after C2HS in unanesthetized adult rats via plethysmography. Baseline breathing was similarly altered in all rats (reduced VT, elevated fR) but during hypercapnia females had relatively higher VT (i.e. compared to pre-injury) than male or OVX rats (p<0.05). Phrenic neurograms recorded in anesthetized rats indicated that normalized burst amplitude recorded ipsilateral to C2HS (i.e. the crossed phrenic phenomenon) is greater in females during respiratory challenge (p<0.05 vs. male and OVX). We conclude that sex differences in recovery of VT and phrenic output are present at 2 weeks post-C2HS. These differences are consistent with the hypothesis that ovarian sex hormones influence respiratory recovery after cervical spinal cord injury.
Collapse
Affiliation(s)
- N J Doperalski
- University of Florida, College of Public Health and Health Professions, Department of Physical Therapy, PO Box 100154, 100 Newell Drive, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
10
|
The effect of a low-protein diet on physiological adaptations to pregnancy. Proc Nutr Soc 2008. [DOI: 10.1017/s0029665108000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Wojciechowski JC, Narasipura SD, Charles N, Mickelsen D, Rana K, Blair ML, King MR. Capture and enrichment of CD34-positive haematopoietic stem and progenitor cells from blood circulation using P-selectin in an implantable device. Br J Haematol 2008; 140:673-81. [PMID: 18218048 PMCID: PMC2268974 DOI: 10.1111/j.1365-2141.2007.06967.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clinical infusion of haematopoietic stem and progenitor cells (HSPCs) is vital for restoration of haematopoietic function in many cancer patients. Previously, we have demonstrated an ability to mimic physiological cell trafficking in order to capture CD34-positive (CD34+) HSPCs using monolayers of the cell adhesion protein P-selectin in flow chambers. The current study aimed to determine if HSPCs could be captured directly from circulating blood in vivo. Vascular shunt prototypes, coated internally with P-selectin, were inserted into the femoral artery of rats. Blood flow through the cell capture device resulted in a wall shear stress of 4-6 dynes/cm(2). After 1-h blood perfusion, immunofluorescence microscopy and flow cytometric analysis revealed successful capture of mononuclear cells positive for the HSPC surface marker CD34. Purity of captured CD34+ cells showed sevenfold enrichment over levels found in whole blood, with an average purity of 28%. Robust cell capture and HSPC enrichment were also demonstrated in devices that were implanted in a closed-loop arterio-venous shunt conformation for 2 h. Adherent cells were viable in culture and able to differentiate into burst-forming units. This study demonstrated an ability to mimic the physiological arrest of HSPCs from blood in an implantable device and may represent a practical alternative for adult stem cell capture and enrichment.
Collapse
Affiliation(s)
- Joel C Wojciechowski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Stachenfeld NS, Taylor HS. Exogenous oestradiol and progesterone administration does not cause oedema in healthy young women. Clin Endocrinol (Oxf) 2007; 66:410-8. [PMID: 17302877 DOI: 10.1111/j.1365-2265.2007.02748.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Oedema is an increase in the extravascular component of extracellular fluid volume (ECFV). Fluid movement across the ECF is controlled by hydrostatic and oncotic pressures, which are influenced by oestradiol and progesterone. Thus we hypothesized that oestradiol decreases, while combined oestradiol + progesterone increases, protein and fluid movement out of the vasculature. SUBJECTS Subjects were eight healthy women (22 +/- 2 years). DESIGN Oestrogens and progesterone were suppressed with a gonadotropin-releasing hormone antagonist for 16 days; oestradiol (2 x 0.1 mg/day patches) was added for days 5-16 (E(2)) and progesterone (200 mg/day) was added for days 13-16 (E(2)-P(4)). MEASUREMENTS We estimated intravascular (plasma) volume (PV), transcapillary albumin escape rate (TER(alb)), and Starling forces (hydrostatic pressures of plasma and interstitium, plasma colloid pressure, capillary filtration coefficient) in the forearm on days 2 (GnRH antagonist), 9 (E(2)) and 16 (E(2)-P(4)). RESULTS In E(2), P([E2]) increased from 85 +/- 26 to 984 +/- 136 pmol/ml (P < 0.05), with no change in P([P4]). In E(2)-P(4), P([E2]) increased to 775 +/- 195 pmol/ml and P([P4]) increased from 6.4 +/- 3.2 to 43.8 +/- 16.2 nmol/l, P < 0.05). TER(alb) was lower during E(2) (5.1 +/- 0.9) and E(2)-P(4) (5.0 +/- 1.1) compared to GnRH antagonist (5.8 +/- 0.9%/h, P < 0.05). Plasma volume was unchanged by E(2), and showed a trend (P = 0.07) for an increase during E(2)-P(4) (48.2 +/- 2.9, 49.0 +/- 3.0 and 53.9 +/- 3.5 ml/kg for GnRH antagonist, E(2), E(2)-P(4), respectively). Starling forces were unaffected by hormone treatments. Plasma renin activity and serum aldosterone concentration increased during E(2)-P(4). CONCLUSIONS Neither E(2) nor E(2)-P(4) altered TER(alb) sufficiently to impact Starling forces indicating neither E(2) nor P(4) administration at these levels would likely cause oedema.
Collapse
Affiliation(s)
- Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Epidemiology & Public Health and Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | |
Collapse
|
13
|
Blair ML, Mickelsen D. Activation of lateral parabrachial nucleus neurons restores blood pressure and sympathetic vasomotor drive after hypotensive hemorrhage. Am J Physiol Regul Integr Comp Physiol 2006; 291:R742-50. [PMID: 16574886 DOI: 10.1152/ajpregu.00049.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lesions of the lateral parabrachial nucleus (LPBN) impair blood pressure recovery after hypotensive blood loss (Am J Physiol Regul Integr Comp Physiol 280: R1141, 2001). This study tested the hypothesis that posthemorrhage blood pressure recovery is mediated by activation of neurons, located in the ventrolateral aspect of the LPBN (VL-LPBN), that initiates blood pressure recovery by restoring sympathetic vasomotor drive. Hemorrhage experiments (16 ml/kg over 22 min) were performed in unanesthetized male Sprague-Dawley rats prepared with bilateral ibotenate lesions or guide cannulas directed toward the external lateral subnucleus of the VL-LPBN. Hemorrhage initially decreased mean arterial pressure (MAP) from approximately 100 mmHg control to 40-50 mmHg, and also decreased heart rate. In animals with sham lesions, MAP returned to 84 +/- 4 mmHg by 40 min posthemorrhage, and subsequent autonomic blockade with hexamethonium reduced MAP to 53 +/- 2 mmHg. In contrast, animals with VL-LPBN lesions remained hypotensive at 40 min posthemorrhage (58 +/- 4 mmHg) and hexamethonium had no effect on MAP, implying a deficit in sympathetic tone. VL-LPBN lesions did not alter the renin response or the effect of vasopressin V1 receptor blockade after hemorrhage. Posthemorrhage blood pressure recovery was also significantly delayed by VL-LPBN infusion of the ionotropic glutamate receptor antagonist kynurenic acid. Both VL-LPBN lesions and VL-LPBN kynurenate infusion caused posthemorrhage bradycardia to be significantly prolonged. Bradycardia was reversed by hexamethonium or atropine, but did not contribute to posthemorrhage hypotension. Taken together, these data support the hypothesis that stimulation of VL-LPBN glutamate receptors mediates spontaneous blood pressure recovery by initiating restoration of sympathetic vasomotor drive.
Collapse
Affiliation(s)
- Martha L Blair
- Dept. of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|