1
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
3
|
Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Shaw CJ, Skeffington KL, Beck C, Giussani DA. Altered Cardiovascular Defense to Hypotensive Stress in the Chronically Hypoxic Fetus. Hypertension 2020; 76:1195-1207. [PMID: 32862711 PMCID: PMC7480941 DOI: 10.1161/hypertensionaha.120.15384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. The hypoxic fetus is at greater risk of cardiovascular demise during a challenge, but the reasons behind this are unknown. Clinically, progress has been hampered by the inability to study the human fetus non-invasively for long period of gestation. Using experimental animals, there has also been an inability to induce gestational hypoxia while recording fetal cardiovascular function as the hypoxic pregnancy is occurring. We use novel technology in sheep pregnancy that combines induction of controlled chronic hypoxia with simultaneous, wireless recording of blood pressure and blood flow signals from the fetus. Here, we investigated the cardiovascular defense of the hypoxic fetus to superimposed acute hypotension. Pregnant ewes carrying singleton fetuses surgically prepared with catheters and flow probes were randomly exposed to normoxia or chronic hypoxia from 121±1 days of gestation (term ≈145 days). After 10 days of exposure, fetuses were subjected to acute hypotension via fetal nitroprusside intravenous infusion. Underlying in vivo mechanisms were explored by (1) analyzing fetal cardiac and peripheral vasomotor baroreflex function; (2) measuring the fetal plasma catecholamines; and (3) establishing fetal femoral vasoconstrictor responses to the α1-adrenergic agonist phenylephrine. Relative to controls, chronically hypoxic fetal sheep had reversed cardiac and impaired vasomotor baroreflex function, despite similar noradrenaline and greater adrenaline increments in plasma during hypotension. Chronic hypoxia markedly diminished the fetal vasopressor responses to phenylephrine. Therefore, we show that the chronically hypoxic fetus displays markedly different cardiovascular responses to acute hypotension, providing in vivo evidence of mechanisms linking its greater susceptibility to superimposed stress.
Collapse
Affiliation(s)
- Beth J Allison
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kirsty L Brain
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Youguo Niu
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Andrew D Kane
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | | | - Avnesh S Thakor
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kimberley J Botting
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Christine M Cross
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Nozomi Itani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Caroline J Shaw
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Institute of Reproductive and Developmental Biology, Imperial College, London United Kingdom (C.J.S.)
| | - Katie L Skeffington
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Chritian Beck
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Dino A Giussani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Cambridge Cardiovascular Strategic Research Initiative (D.A.G.).,Cambridge Strategic Research Initiative in Reproduction (D.A.G.)
| |
Collapse
|
4
|
Yasuda S, Kyozuka H, Nomura Y, Fujimori K. Effect of magnesium sulfate on baroreflex during acute hypoxemia in chronically instrumented fetal sheep. J Obstet Gynaecol Res 2020; 46:1035-1043. [PMID: 32462672 DOI: 10.1111/jog.14274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effects of magnesium sulfate on fetal baroreflex in normoxemia or acute fetal hypoxemia. METHODS Fetal baroreflex response was elicited using phenylephrine (30 μg) in saline and magnesium sulfate in 8 chronically treated and instrumented fetal sheep. Hypoxemia was induced using nitrogen gas inflow for 30 min. Baroreflex, calculated as the ratio of the fetal heart rate change to the mean arterial pressure, was monitored after magnesium sulfate administration and in rapid and nonrapid eye movement (NREM) sleep states. Baroreflex was assessed in response to hypoxemia in control groups in both the rapid and NREM sleep states. RESULTS Baroreflex was not significantly affected by saline, magnesium sulfate and rapid or NREM sleep states in normoxemic sheep. Hypoxemia increased the baroreflex in the saline-treated group (hypoxemic vs normoxemic rapid eye movement sleep: 4.37 ± 2.48 vs 2.72 ± 0.83; P < 0.05; hypoxemic vs normoxemic NREM sleep: 4.30 ± 1.47 vs 3.15 ± 0.83; P < 0.001). Magnesium sulfate decreased the baroreflex in the hypoxemic fetuses (magnesium sulfate hypoxemic vs. control normoxemic fetuses: 1.42 ± 0.92 vs 3.15 ± 0.83, P < 0.05). CONCLUSION The hypoxemic fetal sheep, from the ewes that were receiving magnesium sulfate, showed a significantly reduced in the baroreflex response. In clinical practice, baroreflex-related decelerations in hypoxemic fetuses of mothers receiving magnesium sulfate should be carefully interpreted.
Collapse
Affiliation(s)
- Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Hyo Kyozuka
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Yasuhisa Nomura
- Department of Obstetrics and Gynecology, Ohta Nishinouchi Hospital, Koriyama, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
5
|
Morokuma S, Michikawa T, Yamazaki S, Nitta H, Kato K. Association between exposure to air pollution during pregnancy and false positives in fetal heart rate monitoring. Sci Rep 2017; 7:12421. [PMID: 28963562 PMCID: PMC5622039 DOI: 10.1038/s41598-017-12663-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Fetal heart rate (FHR) monitoring is essential for fetal management during pregnancy and delivery but results in many false-positive diagnoses. Air pollution affects the uterine environment; thus, air pollution may change FHR reactivity. This study assessed the association between exposure to air pollution during pregnancy and FHR monitoring abnormalities using 2005-2010 data from the Japan Perinatal Registry Network database. Participants were 23,782 singleton pregnant women with FHR monitoring, without acidemia or fetal asphyxia. We assessed exposure to air pollutants, including particulate matter (PM), ozone, nitrogen dioxide (NO2), and sulfur dioxide (SO2). In a multi-trimester model, first-trimester PM exposure was associated with false positives in FHR monitoring (odds ratio [OR] per interquartile range (10.7 μg/m3) increase = 1.20; 95% CI: 1.05-1.37), but not second-trimester exposure (OR = 1.05; 95% CI: 0.91-1.21) and third-trimester exposure (OR = 1.06; 95% CI: 0.96-1.17). The association with first-trimester PM exposure persisted after adjustment for exposure to ozone, NO2, and SO2; however, ozone, NO2, and SO2 exposure was not associated with false positives in FHR monitoring. First-trimester PM exposure may alter fetal cardiac response and lead to false positives in FHR monitoring.
Collapse
Affiliation(s)
- Seiichi Morokuma
- Department of Obstetrics and Gynaecology, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takehiro Michikawa
- Environmental Epidemiology Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shin Yamazaki
- Environmental Epidemiology Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroshi Nitta
- Environmental Epidemiology Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynaecology, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Skeffington KL, Beck C, Giussani DA. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J Physiol 2016; 594:1247-64. [PMID: 26926316 PMCID: PMC4771786 DOI: 10.1113/jp271091] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species.
Collapse
Affiliation(s)
- B J Allison
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Brain
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Y Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - A D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A S Thakor
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Radiology, Stanford University Medical Centre, Palo Alto, CA, 94305, USA
| | - K J Botting
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
7
|
Kane AD, Herrera EA, Camm EJ, Giussani DA. Vitamin C prevents intrauterine programming of in vivo cardiovascular dysfunction in the rat. Circ J 2013; 77:2604-11. [PMID: 23856654 DOI: 10.1253/circj.cj-13-0311] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fetal hypoxia is common and in vitro evidence supports its role in the programming of adult cardiovascular dysfunction through the generation of oxidative stress. Whether fetal chronic hypoxia programmes alterations in cardiovascular control in vivo, and if these alterations can be prevented by antioxidant treatment, is unknown. This study investigated the effects of prenatal fetal hypoxia, with and without maternal supplementation with vitamin C, on basal and stimulated cardiovascular function in vivo in the adult offspring at 4 months of age in the rat. METHODS AND RESULTS From days 6 to 20 of pregnancy, Wistar rats were subjected to Normoxia, Hypoxia (13% O2), Hypoxia+Vitamin C (5mg/ml in drinking water) or Normoxia+Vitamin C. At 4 months, male offspring were instrumented under urethane anaesthesia. Basal mean arterial blood pressure, heart rate and heart rate variability (HRV) were assessed, and stimulated baroreflex curves were generated with phenylephrine and sodium nitroprusside. Chronic fetal hypoxia increased the LF/HF HRV ratio and baroreflex gain, effects prevented by vitamin C administration during pregnancy. CONCLUSIONS Chronic intrauterine hypoxia programmes cardiovascular dysfunction in vivo in adult rat offspring; effects ameliorated by maternal treatment with vitamin C. The data support a role for fetal chronic hypoxia programming cardiovascular dysfunction in the adult rat offspring in vivo through the generation of oxidative stress in utero.
Collapse
Affiliation(s)
- Andrew D Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge
| | | | | | | |
Collapse
|
8
|
Wood CE, Rabaglino MB, Chang EI, Denslow N, Keller-Wood M, Richards E. Genomics of the fetal hypothalamic cellular response to transient hypoxia: endocrine, immune, and metabolic responses. Physiol Genomics 2013; 45:521-7. [PMID: 23653468 DOI: 10.1152/physiolgenomics.00005.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fetuses respond to transient hypoxia (a common stressor in utero) with cellular responses that are appropriate for promoting survival of the fetus. The present experiment was performed to identify the acute genomic responses of the fetal hypothalamus to transient hypoxia. Three fetal sheep were exposed to 30 min of hypoxia and hypothalamic mRNA extracted from samples collected 30 min after return to normoxia. These samples were compared with those from four normoxic control fetuses by the Agilent 019921 ovine array. Differentially regulated genes were analyzed by network analysis and by gene ontology analysis, identifying statistically significant overrepresentation of biological processes. Real-time PCR of selected genes supported the validity of the array data. Hypoxia induced increased expression of genes involved in response to oxygen stimulus, RNA splicing, antiapoptosis, vascular smooth muscle proliferation, and positive regulation of Notch receptor target. Downregulated genes were involved in metabolism, antigen receptor-mediated immunity, macromolecular complex assembly, S-phase, translation elongation, RNA splicing, protein transport, and posttranscriptional regulation. We conclude that these results emphasize that the cellular response to hypoxia involves reduced metabolism, the involvement of the fetal immune system, and the importance of glucocorticoid signaling.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.
Collapse
|
10
|
Eme J, Hicks JW, Crossley DA. Chronic hypoxic incubation blunts a cardiovascular reflex loop in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 2011; 181:981-90. [DOI: 10.1007/s00360-011-0569-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 12/31/2022]
|
11
|
In dystrophic hamsters losartan affects control of ventilation and dopamine D1 receptor density. Respir Physiol Neurobiol 2010; 173:71-8. [PMID: 20601215 DOI: 10.1016/j.resp.2010.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/01/2010] [Accepted: 06/16/2010] [Indexed: 11/24/2022]
Abstract
The BIO 14.6 hamster (DV), an animal model of limb-girdle muscular dystrophy, has elevated angiotensin AT1 receptors that may affect ventilation. Moreover, AT1 receptors may modulate expression of dopamine D1 receptors. We investigated if chronic treatment of BIO 14.6 hamsters (DL) with losartan, an AT1 receptor blocker, affects D1 receptor density in the striatum and nucleus tractus solitarius (NTS) and normalizes ventilation during exposure to air, hypoxia, following hypoxia, and hypercapnia, Ventilation was evaluated using plethysmography. Compared to the golden Syrian hamsters (GS), DV hamsters exhibited lower hypercapnic and hypoxic responsiveness and ventilation during hypercapnic exposure. Relative to GS, DL hamsters increased breathing frequency in air and maintained ventilation during hypercapnia. Post-hypoxic minute ventilation decline occurred in DV but not in DL or GS hamsters. DL hamsters exhibited higher D1 receptor density in the striatum and NTS relative to DV hamsters. Thus, in dystrophic hamsters chronic losartan treatment stimulated frequency of breathing and increased the density of D1 receptors.
Collapse
|