1
|
Tang M, Wu Y, Olnood CG, Gao Y, Wang F, Zhang Z, Peng C, Zhou X, Huang C, Xiong X, Yin Y. Effects of peroxidized lipids on intestinal morphology, antioxidant capacity and gut microbiome in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:430-443. [PMID: 40034456 PMCID: PMC11875184 DOI: 10.1016/j.aninu.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study investigated the effect of peroxidized lipids on piglets' growth performance, intestinal morphology, inflammatory reactions, oxidative stress in the liver, duodenum, jejunum, ileum, and colon, and ileal microbiota. Twenty piglets (Duroc × [Landrace × Yorkshire]; age = 21 d old, BW = 6.5 ± 1 kg) were randomly assigned to two groups with 10 replicates per group and one piglet per replicate. The control group was fed 6% fresh soybean oil and the peroxidized soybean oil (PSO) group fed 6% PSO. The experimental feeding period lasted 24 d. The study found no impact on ADFI, ADG and gain to feed ratio (P > 0.05). However, the PSO group increased the diarrhea index and the serum levels of lactate dehydrogenase triglycerides, cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (P < 0.05), along with decreased concentrations of alanine aminotransferase and blood urea nitrogen (P < 0.05). For oxidative enzymes, PSO increased the concentration of F2-isoprostane in urine (P = 0.032), malondialdehyde (MDA) in the duodenum (P = 0.001) and jejunum (P = 0.004), decreased thiobarbituric acid reactive substances (TBARS) in the liver (P = 0.001) but increased TBARS in duodenum (P = 0.001), and carbonylated proteins in the duodenum (P = 0.003). For antioxidant enzymes, PSO decreased superoxide dismutase (SOD) in the liver (P = 0.001), colon (P = 0.002), and jejunum (P = 0.015), along with glutathione peroxidase (GSH-Px) in the liver (P = 0.008) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in ileum (P = 0.001). For inflammatory reactions, PSO increased interleukin (IL)-1β concentrations in the duodenum and colon, and IL-10 in the jejunum, while decreasing IL-4 concentration in the duodenum (P < 0.05). For intestinal morphology and ileal microbiota, PSO increased ileal crypt depth, while decreasing the crypt-to-villus ratio (P < 0.05). Peroxidized soybean oil increased the relative abundance of Prevotella, Clostridium_sensu_stricto_1, Clostridium_sensu_stricto_6, Pasteurella and Klebsiella (P < 0.05). In conclusion, this study revealed that PSO worsened diarrhea, increasing the ileal crypt depth and the relative abundance of harmful microbiota, and induced oxidative stress and inflammation in the intestines and liver, primarily in the jejunum and ileum.
Collapse
Affiliation(s)
- Mengxuan Tang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuliang Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | | | - Yundi Gao
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Fei Wang
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Zicheng Zhang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Can Peng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Xihong Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Peroxidised dietary lipids impair intestinal function and morphology of the small intestine villi of nursery pigs in a dose-dependent manner. Br J Nutr 2015; 114:1985-92. [DOI: 10.1017/s000711451500392x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe objective of this study was to investigate the effect of increasing degrees of lipid peroxidation on structure and function of the small intestine of nursery pigs. A total of 216 pigs (mean body weight was 6·5 kg) were randomly allotted within weight blocks and sex and fed one of five experimental diets for 35 d (eleven pens per treatment with three to four pigs per pen). Treatments included a control diet without added lipid, and diets supplemented with 6 % soyabean oil that was exposed to heat (80°C) and constant oxygen flow (1 litre/min) for 0, 6, 9 and 12 d. Increasing lipid peroxidation linearly reduced feed intake (P<0·001) and weight gain (P=0·024). Apparent faecal digestibility of gross energy (P=0·001) and fat (P<0·001) decreased linearly as the degree of peroxidation increased. Absorption of mannitol (linear,P=0·097) andd-xylose (linear,P=0·089), measured in serum 2 h post gavage with a solution containing 0·2 g/ml ofd-xylose and 0·3 g/ml of mannitol, tended to decrease progressively as the peroxidation level increased. Increasing peroxidation also resulted in increased villi height (linear,P<0·001) and crypt depth (quadratic,P=0·005) in the jejunum. Increasing peroxidation increased malondialdehyde concentrations (quadratic,P=0·035) and reduced the total antioxidant capacity (linear,P=0·044) in the jejunal mucosa. In conclusion, lipid peroxidation progressively diminished animal performance and modified the function and morphology of the small intestine of nursery pigs. Detrimental effects were related with the disruption of redox environment of the intestinal mucosa.
Collapse
|
3
|
Bounaama A, Djerdjouri B, Laroche-Clary A, Le Morvan V, Robert J. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice. Toxicology 2012; 302:308-17. [PMID: 22982865 DOI: 10.1016/j.tox.2012.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.
Collapse
Affiliation(s)
- Abdelkader Bounaama
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | | | | | | | | |
Collapse
|
4
|
Circu ML, Aw TY. Intestinal redox biology and oxidative stress. Semin Cell Dev Biol 2012; 23:729-37. [PMID: 22484611 DOI: 10.1016/j.semcdb.2012.03.014] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium sits at the interface between an organism and its luminal environment, and as such is prone to oxidative damage induced by luminal oxidants. Mucosal integrity is maintained by the luminal redox status of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) couples which also support luminal nutrient absorption, mucus fluidity, and a diverse microbiota. The epithelial layer is uniquely organized for rapid self-renewal that is achieved by the well-regulated processes of crypt stem cell proliferation and crypt-to-villus cell differentiation. The GSH/GSSG and Cys/CySS redox couples, known to modulate intestinal cell transition through proliferation, differentiation or apoptosis, could govern the regenerative potential of the mucosa. These two couples, together with that of the thioredoxin/thioredoxin disulfide (Trx/TrxSS) couple are the major intracellular redox systems, and it is proposed that they each function as distinctive redox control nodes or circuitry in the control of metabolic processes and networks of enzymatic reactions. Specificity of redox signaling is accomplished in part by subcellular compartmentation of the individual redox systems within the mitochondria, nucleus, endoplasmic reticulum, and cytosol wherein each defined redox environment is suited to the specific metabolic function within that compartment. Mucosal oxidative stress would result from the disruption of these unique redox control nodes, and the subsequent alteration in redox signaling can contribute to the development of degenerative pathologies of the intestine, such as inflammation and cancer.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
5
|
Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res 2011; 100:295-303. [PMID: 22078747 DOI: 10.1016/j.eplepsyres.2011.09.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 12/23/2022]
Abstract
The ketogenic diet (KD) is a high-fat, low carbohydrate diet that is used as a therapy for intractable epilepsy. However, the mechanism(s) by which the KD achieves neuroprotection and/or seizure control are not yet known. The broad efficacy of the KD in diverse epilepsies coupled with its profound influence on metabolism suggests that mitochondrial functions may be critical in its mechanism(s) of seizure control. Mitochondria subserve important cellular functions that include the production of cellular ATP, control of apoptosis, maintenance of calcium homeostasis and the production and elimination of reactive oxygen species (ROS). This review will focus on recent literature reporting the regulation of mitochondrial functions and redox signaling by the KD. The review highlights a potential mechanism of the KD involving the production of low levels of redox signaling molecules such as H(2)O(2) and electrophiles e.g. 4-hydroxynonenal (4-HNE), which in turn activate adaptive pathways such as the protective transcription factor, NF E2-related factor 2 (Nrf2). This can ultimately result in increased production of antioxidants (e.g. GSH) and detoxification enzymes which may be critical in mediating the protective effects of the KD.
Collapse
|
6
|
Abstract
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
7
|
Abstract
Living systems have three major types of cell signalling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion-gating mechanisms. Development of integrated systems biology descriptions of cell signalling require conceptual models incorporating all three. Recent advances in redox biology show that thiol-disulphide redox systems are regulated under dynamic, nonequilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials amongst subcellular compartments. This article uses these observations as a basis to distinguish 'redox-sensing' mechanisms, which are more global biologic redox control mechanisms, from 'redox signalling', which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signalling use sulphur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signalling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion-gating and redox-signalling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signalling proteins. Effects mediated through Cys residues not directly involved in signalling means redox-sensing control can be orthogonal to the signalling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signalling mechanisms. Recent findings that thiol-disulphide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression.
Collapse
Affiliation(s)
- D P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Shyntum Y, Iyer SS, Tian J, Hao L, Mannery YO, Jones DP, Ziegler TR. Dietary sulfur amino acid supplementation reduces small bowel thiol/disulfide redox state and stimulates ileal mucosal growth after massive small bowel resection in rats. J Nutr 2009; 139:2272-8. [PMID: 19828685 PMCID: PMC2777475 DOI: 10.3945/jn.109.105130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following massive small bowel resection in animal models, the remnant intestine undergoes a dynamic growth response termed intestinal adaptation. Cell growth and proliferation are intimately linked to cellular and extracellular thiol/disulfide redox states, as determined by glutathione (GSH) and GSH disulfide (GSSG) (the major cellular redox system in tissues), and cysteine (Cys) and its disulfide cystine (CySS) (the major redox system in plasma), respectively. The study was designed to determine whether dietary supplementation with sulfur amino acids (SAA) leads to a greater reduction in thiol/disulfide redox state in plasma and small bowel and colonic mucosa and alters gut mucosal growth in an established rat model of short bowel syndrome (SBS). Adult rats underwent 80% jejunal-ileal resection (RX) or small bowel transection (surgical control) and were pair-fed either isonitrogenous, isocaloric SAA-adequate (control) or SAA-supplemented diets (218% increase vs. control diet). Plasma and gut mucosal samples were obtained after 7 d and analyzed for Cys, CySS, GSH, and GSSG concentrations by HPLC. Redox status (E(h)) of the Cys/CySS and GSH/GSSG couples were calculated using the Nernst equation. SAA supplementation led to a greater reduction in E(h) GSH/GSSG in jejunal and ileal mucosa of resected rats compared with controls. Resected SAA-supplemented rats showed increased ileal adaptation (increased full-thickness wet weight, DNA, and protein content compared with RX control-fed rats; increased mucosal crypt depth and villus height compared with all other study groups). These data suggest that SAA supplementation has a trophic effect on ileal adaptation after massive small bowel resection in rats. This finding may have translational relevance as a therapeutic strategy in human SBS.
Collapse
Affiliation(s)
- Yvonne Shyntum
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Smita S. Iyer
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Junqiang Tian
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Li Hao
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Yanci O. Mannery
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322
| | - Thomas R. Ziegler
- Graduate Program in Molecular and Systems Pharmacology, Graduate Program in Nutrition and Health Sciences, Department of Medicine, and Center for Clinical and Molecular Nutrition, Emory University, Atlanta GA 30322,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44:921-37. [PMID: 18155672 PMCID: PMC2587159 DOI: 10.1016/j.freeradbiomed.2007.11.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 01/18/2023]
Abstract
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
Collapse
Affiliation(s)
- Melissa Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta GA 30332
| | - Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
- Corresponding Author: Dr. Dean P. Jones, 205 Whitehead Research Center, Emory University, Atlanta, GA 30322, Phone: 404-727-5970; Fax; 404-712-2974; E-mail:
| |
Collapse
|
10
|
Oz HS, Ebersole JL. Application of prodrugs to inflammatory diseases of the gut. Molecules 2008; 13:452-74. [PMID: 18305431 PMCID: PMC6244946 DOI: 10.3390/molecules13020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 12/11/2022] Open
Abstract
Oral delivery is the most common and preferred route of drug administration although the digestive tract exhibits several obstacles to drug delivery including motility and intraluminal pH profiles. The gut milieu represents the largest mucosal surface exposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content. Approximately, one third of fecal dry matter is made of bacteria/ bacterial components. Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers (polysaccharides) and fermentation of short chain fatty acids such as acetate and butyrate that provide carbon sources (fuel) for these bacteria. Inflammatory bowel disease (IBD) results in breakage of the mucosal barrier, an altered microbiota and dysregulated gut immunity. Prodrugs that are chemically constructed to target colonic release or are degraded specifically by colonic bacteria, can be useful in the treatment of IBD. This review describes the progress in digestive tract prodrug design and delivery in light of gut metabolic activities.
Collapse
Affiliation(s)
- Helieh S Oz
- Center for Oral Health Research, College of Dentistry and Department of Internal Medicine, University of Kentucky, Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The epithelium makes numerous important contributions to intestinal function. It acts as a physical barrier to prevent pathogenic infection, but allows nutrient uptake and the bidirectional passage of ions and water to lubricate the intestinal lumen while restricting fluid loss. The epithelium mediates communication between the immune system and the commensal flora, and plays a major role in antigen sampling and development of tolerance. After mucosal injury, the epithelium must reestablish its barrier and transport functions for homeostasis to be restored. Here, we will discuss recent advances in our understanding of the roles of the epithelium in intestinal homeostasis. RECENT FINDINGS Mechanisms responsible for epithelial communication with enteric flora and pathogens include the regulation and function of Toll-like receptors and nucleotide-binding oligomerization domain-2, and maintenance and repair of epithelial barrier properties, including the role of growth factors and bacterial peptides in epithelial repair. SUMMARY Recent advances in our understanding of mechanisms by which the gut epithelium modulates, and is modified by, enteric flora and the mucosal immune system illuminate the importance of the epithelium in gut physiology. The work discussed may also identify novel targets that can potentially be modulated therapeutically, either with existing medications or newer agents in development.
Collapse
Affiliation(s)
- Declan F McCole
- School of Medicine, University of California at San Diego, San Diego, California 92093-0063, USA
| | | |
Collapse
|