1
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Li CS, Chung KM, Kim KN, Cho YK. Influences of ethanol and temperature on sucrose-evoked response of gustatory neurons in the hamster solitary nucleus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:603-611. [PMID: 34697271 PMCID: PMC8552825 DOI: 10.4196/kjpp.2021.25.6.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
Taste-responsive neurons in the nucleus of the solitary tract (NST), the first gustatory nucleus, often respond to thermal or mechanical stimulation. Alcohol, not a typical taste modality, is a rewarding stimulus. In this study, we aimed to investigate the effects of ethanol (EtOH) and/or temperature as stimuli to the tongue on the activity of taste-responsive neurons in hamster NST. In the first set of experiments, we recorded the activity of 113 gustatory NST neurons in urethane-anesthetized hamsters and evaluated responses to four basic taste stimuli, 25% EtOH, and 40°C and 4°C distilled water (dH2O). Sixty cells responded to 25% EtOH, with most of them also being sucrose sensitive. The response to 25% EtOH was significantly correlated with the sucrose-evoked response. A significant correlation was also observed between sucrose- and 40°C dH2O- and between 25% EtOH- and 40°C dH2O-evoked firings. In a subset of the cells, we evaluated neuronal activities in response to a series of EtOH concentrations, alone and in combination with 32 mM sucrose (EtOH/Suc) at room temperature (RT, 22°C–23°C), 40°C, and 4°C. Neuronal responses to EtOH at RT and 40°C increased as the concentrations increased. The firing rates to EtOH/Suc were greater than those to EtOH or sucrose alone. The responses were enhanced when solutions were applied at 40°C but diminished at 4°C. In summary, EtOH activates most sucrose-responsive NST gustatory cells, and the concomitant presence of sucrose or warm temperatures enhance this response. Our findings may contribute to elucidate the neural mechanisms underlying appetitive alcohol consumption.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ki-Myung Chung
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Kyung-Nyun Kim
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Young-Kyung Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
3
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
4
|
Fortin SM, Roitman MF. Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai. Physiol Behav 2016; 178:21-27. [PMID: 27876640 DOI: 10.1016/j.physbeh.2016.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
Sodium deficit poses a life-threatening challenge to body fluid homeostasis and generates a sodium appetite - the behavioral drive to ingest sodium. Dr. Randall R. Sakai greatly contributed to our understanding of the hormonal responses to negative sodium balance and to the central processing of these signals. Reactivity to the taste of sodium solutions and the motivation to seek and consume sodium changes dramatically with body fluid balance. Here, we review studies that collectively suggest that sodium deficit recruits the mesolimbic system to play a role in the behavioral expression of sodium appetite. The recruitment of the mesolimbic system likely contributes to intense sodium seeking and reinforces sodium consumption observed in deficient animals. Some of the hormones that are released in response to sodium deficit act directly on both dopamine and nucleus accumbens elements. Moreover, the taste of sodium in sodium deficient rats evokes a pattern of dopamine and nucleus accumbens activity that is similar to responses to rewarding stimuli. A very different pattern of activity is observed in non-deficient rats. Given the well-characterized endocrine response to sodium deficit and its central action, sodium appetite becomes an ideal model for understanding the role of mesolimbic signaling in reward, reinforcement and the generation of motivated behavior.
Collapse
Affiliation(s)
- Samantha M Fortin
- Department of Psychology and Graduate Program in Neuroscience, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, United States
| | - Mitchell F Roitman
- Department of Psychology and Graduate Program in Neuroscience, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, United States.
| |
Collapse
|
5
|
Li CS, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster. J Neurophysiol 2015; 113:3778-86. [PMID: 25744880 DOI: 10.1152/jn.00362.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/04/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois; Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Heilongjiang, People's Republic of China
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, People's Republic of China; and
| | - Young K Cho
- Department of Physiology and Neuroscience, College of Dentistry, and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
6
|
McKinley MJ. Adaptive appetites for salted and unsalted food in rats: differential effects of sodium depletion, DOCA, and dehydration. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1149-60. [PMID: 23594615 DOI: 10.1152/ajpregu.00481.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most ingested sodium is contained in food. The aim was to investigate whether sodium depletion, dehydration, or DOCA alters intakes of salted and unsalted foods by rats given choices of two foods: salted (0.2-0.5% Na) and unsalted food containing either similar or different other dietary components. Diuretic-induced (furosemide or acetazolamide, two treatments on successive days) sodium depletion always caused pronounced falls in intake of unsalted food within 24 h, continuing at least another 2 days (e.g., 20.9 ± 1.6 pretreatment to 14.8 ± 1.2, 10.6 ± 1.5, and 14.3 ± 1.3 g/day for 3 days of depletion). Intake and preference for salted food increased after 24-72 h (e.g., 6.5 ± 1.2 pretreatment to 7.1 ± 1.1, 16.4 ± 2.3, and 17.0 ± 1.5 g/day at 1, 2, and 3 days of depletion). Valsartan (10 mg/day) blocked the increased intake of salted food but not the reduced intake of unsalted food. DOCA (2 mg/day) caused equivalent increase and decrease in intakes of salted and unsalted food, respectively. Water-deprived rats reduced intake (e.g., 14.2 ± 3.1 to 3.2 ± 2.0 g/day) of and preference for salted food (e.g., 56 ± 13% to 21 ± 11%) after 2 days of dehydration but did not consistently reduce intake of unsalted food. Total food ingested/day fell in both sodium-depleted and dehydrated rats. Rats regulate intakes of different foods to balance sodium needs, osmoregulatory homeostasis, and energy requirements. Reduced appetite for unsalted food may be a homeostatic response to sodium depletion, which together with subsequent generation of appetite for salted food, drives animals to ingest sodium-containing food, thereby restoring sodium balance.
Collapse
Affiliation(s)
- M J McKinley
- Florey Neuroscience Institutes of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Li CS, Chung S, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J Neurophysiol 2012; 108:1288-98. [DOI: 10.1152/jn.00121.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabrachial nuclei (PbN), the second central relay for the gustatory pathway, transfers taste information to various forebrain gustatory nuclei and to the gustatory cortex. The nucleus accumbens is one of the critical neural substrates of the reward system, and the nucleus accumbens shell region (NAcSh) is associated with feeding behavior. Taste-evoked neuronal responses of PbN neurons are modulated by descending projections from the gustatory nuclei in the forebrain. In the present study, we investigated whether taste-responsive neurons in the PbN project to the NAcSh and whether pontine gustatory neurons are subject to modulatory influence from the NAcSh in urethane-anesthetized hamsters. Extracellular single-unit activity was recorded in the PbN, and taste responses were confirmed by the delivery of 32 mM sucrose, NaCl, quinine hydrochloride, and 3.2 mM citric acid to the anterior tongue. The NAcSh was then stimulated (0.5 ms, ≤100 μA) bilaterally using concentric bipolar stimulating electrodes. A total of 98 taste neurons were recorded from the PbN. Eighteen neurons were antidromically invaded from the NAcSh, mostly the ipsilateral NAcSh ( n = 16). Stimulation of the ipsilateral and contralateral NAcSh suppressed the neuronal activity of 88 and 55 neurons, respectively; 52 cells were affected bilaterally. In a subset of pontine neurons tested, electrical stimulation of the NAcSh during taste stimulation also suppressed taste-evoked neuronal firing. These results demonstrated that taste-responsive neurons in the PbN not only project to the NAcSh but also are under substantial descending inhibitory influence from the bilateral NAcSh.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Jiamusi, People's Republic of China
| | - Sooyoung Chung
- Center for Neural Science L7313, Korea Institute of Science and Technology, Seoul, Korea
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, and School of Stomatology, Capital Medical University, Beijing, People's Republic of China; and
| | - Young K. Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon, Korea
| |
Collapse
|
8
|
Cho YK, Mao L, Li CS. Modulation of solitary taste neurons by electrical stimulation of the ventroposteromedial nucleus of the thalamus in the hamster. Brain Res 2008; 1221:67-79. [PMID: 18565498 DOI: 10.1016/j.brainres.2008.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/21/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Taste neurons in the nucleus of the solitary tract (NST) not only send axons to the parabrachial nuclei (PbN), but also receive descending projections from gustatory nuclei in the forebrain in rodents. The parvicellular portion of the ventroposteromedial nucleus of the thalamus (VPMpc) receives projections from the bilateral PbN and transmits taste information to the gustatory cortex. Here, we examined the influence of bilateral stimulation of the VPMpc on taste-responsive neurons in the NST. Extracellular single unit activity was recorded from the urethane-anesthetized hamster. Taste responses were confirmed by delivery of four basic tastants to the anterior tongue. After identifying a taste neuron in the NST, the VPMpc was stimulated bilaterally. Thirty seven out of 83 neurons were orthodromically activated following VPMpc stimulation: 30 were excited and seven were inhibited. Among these cells, seven were excited and one was inhibited bilaterally. In addition, four NST neurons were antidromically invaded from the ipsilateral VPMpc. The effect of VPMpc activation on taste-driven responses was tested on 8 of 30 cells that were excited, and all seven cells that were inhibited by the VPMpc stimulation. The VPMpc stimulation enhanced responses to the effective taste stimuli or suppressed the taste-evoked activities in all eight and seven cells tested, respectively, parallel to the type of the inputs which they received from the VPMpc. These results suggest that a subset of taste neurons in the NST is under the influence from the bilateral VPMpc and that the VPMpc activation modulates taste responses of these cells.
Collapse
Affiliation(s)
- Young K Cho
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | | | |
Collapse
|
9
|
Norgren R, Hajnal A, Mungarndee SS. Gustatory reward and the nucleus accumbens. Physiol Behav 2006; 89:531-5. [PMID: 16822531 PMCID: PMC3114426 DOI: 10.1016/j.physbeh.2006.05.024] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/11/2006] [Accepted: 05/24/2006] [Indexed: 01/13/2023]
Abstract
The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release.
Collapse
Affiliation(s)
- R Norgren
- Department of Neural and Behavioral Sciences, H181, College of Medicine, The Pennsylvania State University, Hershey, PA 17033-0850, USA.
| | | | | |
Collapse
|
10
|
Tindell AJ, Smith KS, Peciña S, Berridge KC, Aldridge JW. Ventral Pallidum Firing Codes Hedonic Reward: When a Bad Taste Turns Good. J Neurophysiol 2006; 96:2399-409. [PMID: 16885520 DOI: 10.1152/jn.00576.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventral pallidum (VP) is a key structure in brain mesocorticolimbic reward circuits that mediate “liking” reactions to sensory pleasures. Do firing patterns in VP actually code sensory pleasure? Strong evidence for hedonic coding requires showing that neural signals track positive increases in sensory pleasure or even reversals from bad to good. A useful test is the salt alliesthesia of physiological sodium depletion that makes even aversively intense NaCl taste become palatable and “liked.” We compared VP neural firing activity in rats during aversive “disliking” reactions elicited by a noxiously intense NaCl taste (triple-seawater 1.5 M concentration) in normal homeostatic state versus in a physiological salt appetite state that made the same NaCl taste palatable and elicit positive “liking” reactions. We also compared firing elicited by palatable sucrose taste, which always elicited “liking” reactions in both states. A dramatic doubling in the amplitude of VP neural firing peaks to NaCl was caused by salt appetite that matched the affective switch from aversive (“disliking”) to positive hedonic (“liking”) reactions. By contrast, VP neural activity to “liked” sucrose taste was always high and never altered. In summary, VP firing activity selectively tracks the hedonic values of tastes, even across hedonic reversals caused by physiological changes. Our data provide the strongest evidence yet for neural hedonic coding of natural sensory pleasures and suggest, by extension, how abnormalities in VP firing patterns might contribute to clinical hedonic dysfunctions.
Collapse
Affiliation(s)
- Amy J Tindell
- Department of Psychology, University of Michigan Medical School, 1150 West Medical Center Drive, Medical Science Bldg I, Room 3317, Ann Arbor, MI 48109-0607, USA
| | | | | | | | | |
Collapse
|
11
|
Lemon CH, Smith DV. Influence of response variability on the coding performance of central gustatory neurons. J Neurosci 2006; 26:7433-43. [PMID: 16837591 PMCID: PMC6674201 DOI: 10.1523/jneurosci.0106-06.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We explored how variability in responding to taste stimuli could impact the signaling of taste quality information by neuron types and individual cells in the nucleus of the solitary tract. One hundred sixty-two neurons recorded from anesthetized rats were grouped using multivariate analysis of taste responses to the following (in m): 0.5 sucrose, 0.1 NaCl, 0.01 HCl, and 0.01 quinine-HCl. Neurons fell into one of three groups corresponding to cell types that responded optimally to sucrose, NaCl, or HCl. A statistical model was used to examine whether responses observed among neurons within each group could be correctly attributed to the optimal stimulus or another tastant on the basis of spike count. Results revealed poor classification performance in some cases attributable to wide variations in the sensitivities of neurons that compose a cell type. This outcome leads us to question whether neuron types could faithfully encode a single taste quality. We then theoretically explored whether a hypothetical observer of individual neurons could discriminate between spiking rates to different tastants during the first second of stimulus processing. Spike rate was found to be an unreliable predictor of stimulus quality for each neuron tested. However, additional analyses suggested that taste stimuli could be identified by a reader that attends to the relative spiking activities of different kinds of neurons in parallel. Rather than assigning meaning to individual neurons or categories of them, central gustatory circuits may signal quality information using a strategy that involves the relative activities of neurons with different sensitivities to tastants.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
12
|
Spector AC, Travers SP. The representation of taste quality in the mammalian nervous system. ACTA ACUST UNITED AC 2006; 4:143-91. [PMID: 16510892 DOI: 10.1177/1534582305280031] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The process by which the mammalian nervous system represents the features of a sapid stimulus that lead to a perception of taste quality has long been controversial. The labeled-line (sparse coding) view differs from the across-neuron pattern (ensemble) counterpoint in proposing that activity in a given class of neurons is necessary and sufficient to generate a specific taste perception. This article critically reviews molecular, electro-physiological, and behavioral findings that bear on the issue. In the peripheral gustatory system, the authors conclude that most qualities appear to be signaled by labeled lines; however, elements of both types of coding characterize signaling of sodium salts. Given the heterogeneity of neuronal tuning functions in the brain, the central coding mechanism is less clear. Both sparse coding and neuronal ensemble models remain viable possibilities. Furthermore, temporal patterns of discharge could contribute additional information. Ultimately, until specific classes of neurons can be selectively manipulated and perceptual consequences assessed, it will be difficult to go beyond mere correlation and conclusively discern the validity of these coding models.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Center for Smell and Taste, University of Florida
| | | |
Collapse
|
13
|
Lemon CH, Smith DV. Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol 2005; 94:3719-29. [PMID: 16107527 DOI: 10.1152/jn.00700.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on the molecular findings that many bitter taste receptors (T2Rs) are expressed within the same receptor cells, it has been proposed that bitter taste is encoded by the activation of discrete neural elements. Here we examined how a variety of bitter stimuli are represented by neural activity in central gustatory neurons. Taste responses (spikes/s) evoked by bathing the tongue and palate with intensity-matched concentrations (in M) of 2 sugars (0.32 sucrose and 0.5 D-fructose), ethanol (40%), 4 salts (0.01 NaCl, 0.008 NaNO(3), 0.01 MgCl(2), and 0.05 KCl), 2 acids (0.003 HCl and 0.005 citric acid), and 10 bitter ligands (0.007 quinine-HCl, 0.015 denatonium benzoate, 0.003 l-cysteine, 0.001 nicotine, 0.005 strychnine-HCl, 0.04 tetraethylammonium chloride, 0.03 atropine-SO(4), 0.005 brucine-SO(4), 0.03 papaverine-HCl, and 0.009 sparteine) were recorded from 51 neurons in the nucleus of the solitary tract of anesthetized rats. Cluster analysis was used to categorize neurons into types based on responses to sucrose, NaCl, HCl, and quinine-HCl. Three groupings emerged: type S (responded optimally to sweets), type N (sodium-optimal), and type H/Q (responded robustly to bitters, acids, and salts). Multivariate analyses revealed that across-neuron patterns of response among bitter stimuli were strongly correlated. However, neural type H/Q, which was most responsive to bitter tastants, was not differentially sensitive to bitter stimuli and Na(+) salts, which rats perceive as distinct. Thus central neurons most responsive to bitter substances receive significant input from receptors that mediate other tastes, indicating that bitter stimuli are not represented by activity in specifically tuned neurons.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | |
Collapse
|