1
|
Shimizu N, Shimizu T, Higashi Y, Zou S, Fukuhara H, Karashima T, Inoue K, Saito M. Possible involvement of brain hydrogen sulphide in the inhibition of the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 2023:175839. [PMID: 37301318 DOI: 10.1016/j.ejphar.2023.175839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
We previously reported that brain α7 nicotinic acetylcholine receptors inhibited the rat micturition reflex. To elucidate the mechanisms underlying this inhibition, we focused on the relationship between α7 nicotinic acetylcholine receptors and hydrogen sulphide (H2S) because we found that H2S also inhibits the rat micturition reflex in the brain. Therefore, we investigated whether H2S is involved in the inhibition of the micturition reflex induced by the activation of α7 nicotinic acetylcholine receptors in the brain. Cystometry was performed in male Wistar rats under urethane anesthesia (0.8 g/kg, ip) to examine the effects of icv pre-treated GYY4137 (H2S donor, 1 or 3 nmol/rat) or aminooxyacetic acid (AOAA; non-selective H2S synthesis inhibitor, 3 or 10 μg/rat) on PHA568487 (α7 nicotinic acetylcholine receptor agonist, icv)-induced prolongation of intercontraction intervals. PHA568487 administration at a lower dose (0.3 nmol/rat, icv) had no significant effect on intercontraction intervals, while under pre-treatment with GYY4137 (3 nmol/rat icv), PHA568487 (0.3 nmol/rat, icv) significantly prolonged intercontraction intervals. PHA568487 at a higher dose (1 nmol/rat, icv) induced intercontraction interval prolongation, and the PHA568487-induced prolongation was significantly suppressed by AOAA (10 μg/rat, icv). The AOAA-induced suppression of the PHA568487-induced intercontraction interval prolongation was negated by supplementing H2S via GYY4137 at a lower dose (1 nmol/rat, icv) in the brain. GYY4137 or AOAA alone showed no significant effect on intercontraction intervals at each dose used in this study. These findings suggest a possible involvement of brain H2S in inhibiting the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
2
|
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus. Int Neurourol J 2021; 25:S114-119. [PMID: 34844394 PMCID: PMC8654309 DOI: 10.5213/inj.2142350.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Raised cerebral titers of acetylcholine have notable links with storage symptomatology related to lower urinary tract symptoms. The hippocampus contributes to the normal control of continence in the majority of instances (circuit 3). Owing to synaptic connections with other nerve cells, acetylcholine affects the micturition pathway via the liberation of additional cerebral neurotransmitters. Despite the fact that cerebral serotonin is a key inhibitor of reflex bladder muscle contractions, the influence of acetylcholine on its liberation is poorly delineated. The current research was conducted in order to explore the role of acetylcholine in serotonin liberation from sections of rat hippocampus in order to improve the comprehension of the relationship between cholinergic and serotonergic neurons. Methods Hippocampal sections from 6 mature male Sprague-Dawley rats were equilibrated over a 30-minute period in standard incubation medium so as to facilitate [3H]5-hydroxytryptamine (5-HT) uptake. The cerebral neurotransmitter, acetylcholine, was applied to the sections. Aliquots of drained medium solution were utilized in order to quantify the radioactivity associated with [3H]5-HT liberation; any alterations in this parameter were noted. Results When judged against the controls, [3H]5-HT liberation from the hippocampal sections remained unaltered following the administration of acetylcholine, implying that this agent has no inhibitory action on this process. Conclusions Serotonin liberation from murine hippocampal sections is unaffected by acetylcholine. It is postulated that the bladder micturition reflex responds to acetylcholine through its immediate cholinergic activity rather than by its influence on serotonin release. These pathways are a promising target for the design of de novo therapeutic agents.
Collapse
|
3
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
Shimizu Y, Shimizu T, Zou S, Ono H, Hata Y, Yamamoto M, Aratake T, Shimizu S, Higashi Y, Karashima T, Saito M. Stimulation of brain α7-nicotinic acetylcholine receptors suppresses the rat micturition through brain GABAergic receptors. Biochem Biophys Res Commun 2021; 548:84-90. [PMID: 33636639 DOI: 10.1016/j.bbrc.2021.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Brain nicotinic acetylcholine receptors (nAChRs) reportedly suppress the micturition, but the mechanisms responsible for this suppression remain unclear. We previously reported that intracerebroventricularly administered (±)-epibatidine (non-selective nAChR agonist) activated the sympatho-adrenomedullary system, which can affect the micturition. Therefore, we investigated (1) whether intracerebroventricularly administered (±)-epibatidine-induced effects on the micturition were dependent on the sympatho-adrenomedullary system, and (2) brain nAChR subtypes involved in the (±)-epibatidine-induced effects in urethane-anesthetized male Wistar rats. Plasma noradrenaline and adrenaline (catecholamines) were measured just before and 5 min after (±)-epibatidine administration. Evaluation of urodynamic parameters, intercontraction intervals (ICI) and maximal voiding pressure (MVP) by cystometry was started 1 h before (±)-epibatidine administration or intracerebroventricular pretreatment with other drugs and continued 1 h after (±)-epibatidine administration. Intracerebroventricularly administered (±)-epibatidine elevated plasma catecholamines and prolonged ICI without affecting MVP, and these changes were suppressed by intracerebroventricularly pretreated mecamylamine (non-selective nAChR antagonist). Acute bilateral adrenalectomy abolished the (±)-epibatidine-induced elevation of plasma catecholamines, but had no effect on the (±)-epibatidine-induced ICI prolongation. The latter was suppressed by intracerebroventricularly pretreated methyllycaconitine (selective α7-nAChR antagonist), SR95531 (GABAA antagonist), and SCH50911 (GABAB antagonist), but not by dihydro-β-erythroidine (selective α4β2-nAChR antagonist). Intracerebroventricularly administered PHA568487 (selective α7-nAChR agonist) prolonged ICI without affecting MVP, similar to (±)-epibatidine. These results suggest that stimulation of brain α7-nAChRs suppresses the rat micturition through brain GABAA/GABAB receptors, independently of the sympatho-adrenomedullary outflow modulation.
Collapse
Affiliation(s)
- Yohei Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideaki Ono
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yurika Hata
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masaki Yamamoto
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takaaki Aratake
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Japan Society for the Promotion of Science, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
5
|
Lippiello P, Bencherif M, Hauser T, Jordan K, Letchworth S, Mazurov A. Nicotinic receptors as targets for therapeutic discovery. Expert Opin Drug Discov 2015; 2:1185-203. [PMID: 23496128 DOI: 10.1517/17460441.2.9.1185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) represent a class of therapeutic targets with the potential to impact numerous diseases and disorders where significant unmet medical needs remain. The latter include cognitive and neurodegenerative diseases; psychotic disorders, such as schizophrenia; acute nociceptive, neuropathic and inflammatory pain; affective disorders, such as depression and inflammation, where nAChR subtypes modulate key cellular pathways involved in anti-inflammatory processes as well as cell survival. Our increased understanding of the heterogeneity of nAChR targets is defining the relationship of biologic effects to specific receptor subtypes, which in turn, will allow further refinement of desired therapeutic activities. Both preclinical and clinical evidence support the notion that novel compounds targeting specific nAChR subtypes will offer increased potency and efficacy, longer lasting effects, fewer side effects and a more rapid onset of action and less dependence, compared with existing therapies. Clinical proof-of-concept is rapidly emerging and will solidify the position of this new therapeutic approach.
Collapse
Affiliation(s)
- Pm Lippiello
- Targacept, Inc., 200 East 1st Street, Suite 300, Winston-Salem, NC 27101, USA +1 336 480 2100 ; +1 336 480 2107 ;
| | | | | | | | | | | |
Collapse
|
6
|
de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. HANDBOOK OF CLINICAL NEUROLOGY 2015; 130:61-108. [PMID: 26003239 DOI: 10.1016/b978-0-444-63247-0.00005-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. Neural control of micturition is organized as a hierarchic system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brainstem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brainstem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily during the early postnatal period, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults cause re-emergence of involuntary micturition, leading to urinary incontinence. The mechanisms underlying these pathologic changes are discussed.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Masuda H, Chancellor MB, Kihara K, Sakai Y, Koga F, Azuma H, de Groat WC, Yoshimura N. Effects of cholinesterase inhibition in supraspinal and spinal neural pathways on the micturition reflex in rats. BJU Int 2009; 104:1163-9. [PMID: 19338542 DOI: 10.1111/j.1464-410x.2009.08515.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate whether activation of brain and spinal cholinergic pathways affects the micturition reflex in rats. MATERIALS AND METHODS The effects of intracerebroventricular (i.c.v.) or intrathecal (i.t.) administration of neostigmine as a cholinesterase inhibitor and oxotremorine-M (OXO-M) as a muscarinic acetylcholine receptor (mAChRs) agonist, on the micturition reflex were evaluated by infusion cystometrography (CMG) in urethane-anaesthetized untreated rats or rats pretreated with capsaicin. RESULTS Neostigmine injected i.c.v. increased bladder capacity (BC) and pressure threshold (PT) dose-dependently, with an increase in maximum voiding pressure (MVP) and a decrease in voiding efficiency (VE) at higher doses. Also, neostigmine injected i.t. increased the BC and PT dose-dependently without changing MVP or VE, and these effects were not apparent in capsaicin-pretreated rats. In both routes, atropine as an antagonist of mAChRs, but not mecamylamine as a nicotinic-AChR antagonist, almost completely antagonized the effects of neostigmine. The rank order of potencies of the antagonists for increasing effects of BC induced by 1 nmol of neostigmine was: pirenzepine (an M(1) mAChR antagonist) = atropine > 4-DAMP (an M(3) mAChR antagonist) " methoctramine (an M(2) mAChR antagonist) and tropicamide (an M(4) mAChR antagonist) via the i.c.v. route; and atropine > methoctramine > pirenzepine > tropicamide and 4-DAMP via the i.t. route, respectively. OXO-M injected via i.c.v. and i.t. had the same effects on BC, PT, MVP and VE as neostigmine by i.c.v. and i.t., respectively. CONCLUSIONS These results indicate that activation of muscarinic cholinergic mechanisms by the cholinesterase inhibitor in the brain and spinal cord can inhibit the micturition reflex, mainly by affecting afferent pathways. These mAChR-induced inhibitory effects seem to be mediated through M(1)/M(3) receptor subtypes in the brain, while in the spinal cord, the M(1)/M(2) receptor subtypes might be involved in inhibitory effects, which are mediated via inhibition of mechanoceptive C-fibre afferent pathways.
Collapse
Affiliation(s)
- Hitoshi Masuda
- Department of Urology, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pan SF, Peng HY, Chen CC, Chen MJ, Lee SD, Cheng CL, Shyu JC, Liao JM, Chen GD, Lin TB. Nicotine-activated descending facilitation on spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats. Am J Physiol Renal Physiol 2008; 294:F1195-204. [DOI: 10.1152/ajprenal.00539.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate the possible neurotransmitter that activates the descending pathways coming from the dorsolateral pontine tegmentum (DPT) to modulate spinal pelvic-urethra reflex potentiation. External urethra sphincter electromyogram (EUSE) activity in response to test stimulation (TS, 1/30 Hz) and repetitive stimulation (RS, 1 Hz) on the pelvic afferent nerve of 63 anesthetized rats were recorded with or without microinjection of nicotinic cholinergic receptor (nAChR) agonists, ACh and nicotine, to the DPT. TS evoked a baseline reflex activity with a single action potential (1.00 ± 0.00 spikes/stimulation, n = 40), whereas RS produced a long-lasting reflex potentiation (16.14 ± 0.96 spikes/stimulation, n = 40) that was abolished by d-2-amino-5-phosphonovaleric acid (1.60 ± 0.89 spikes/stimulation, n = 40) and was attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (7.10 ± 0.84 spikes/stimulation, n = 40). ACh and nicotine microinjections to DPT both produced facilitation on the RS-induced reflex potentiation (23.57 ± 2.23 and 28.29 ± 2.36 spikes/stimulation, P < 0.01, n = 10 and 20, respectively). Pretreatment of selective nicotinic receptor antagonist, chlorisondamine, reversed the facilitation on RS-induced reflex potentiation caused by nicotine (19.41 ± 1.21 spikes/stimulation, P < 0.01, n = 10) Intrathecal WAY-100635 and spinal transection at the T1level both abolished the facilitation on reflex potentiation resulting from the DPT nicotine injection (12.86 ± 3.13 and 15.57 ± 1.72 spikes/stimulation, P < 0.01, n = 10 each). Our findings suggest that activation of nAChR at DPT may modulate N-methyl-d-aspartic acid-dependent reflex potentiation via descending serotonergic neurotransmission. This descending modulation may have physiological/pathological relevance in the neural controls of urethral closure.
Collapse
|
10
|
Chapple CR, Gormley EA. Developments in pharmacological therapy for the overactive bladder. BJU Int 2006; 98 Suppl 1:78-87; discussion 88-9. [PMID: 16911610 DOI: 10.1111/j.1464-410x.2006.06381.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher R Chapple
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Hallam University, Sheffield, UK.
| | | |
Collapse
|
11
|
Masuda H, Hayashi Y, Chancellor MB, Kihara K, de Groat WC, de Miguel F, Yoshimura N. Roles of Peripheral and Central Nicotinic Receptors in the Micturition Reflex in Rats. J Urol 2006; 176:374-9. [PMID: 16753446 DOI: 10.1016/s0022-5347(06)00581-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated the effects of nicotinic acetylcholine receptor activation in the bladder and central nervous system on the micturition reflex in urethane anesthetized rats. MATERIALS AND METHODS The effects of nicotinic acetylcholine receptor activation on bladder activity were examined during continuous infusion cystometrogram. Nicotine with or without the nicotinic acetylcholine receptor antagonist mecamylamine (Sigma Chemical Co., St. Louis, Missouri) was administered intravesically, intrathecally or intracerebroventricularly in normal or capsaicin pretreated rats. We also examined nicotine induced responses in dissociated bladder afferent neurons from L6 to S1 dorsal root ganglia that were sensitive to capsaicin using whole cell patch clamp recordings. RESULTS Intravesical nicotine (1 to 10 mM) significantly decreased intercontraction intervals in dose dependent fashion. This excitatory effect was abolished by co-application of mecamylamine (3 mM) as well as by capsaicin pretreatment. On patch clamp recordings 300 muM nicotine evoked rapid inward currents that were antagonized by mecamylamine in capsaicin sensitive bladder afferent neurons. Intrathecal and intracerebroventricular administration of nicotine (10 mug) decreased and increase intercontraction intervals, respectively. Each effect was antagonized by mecamylamine (50 mug) administered intrathecally and intracerebroventricularly. The spinal excitatory effect was significantly inhibited by the N-methyl-D-aspartate receptor antagonist (+)-MK-801 hydrogen maleate (20 mug) given intrathecally or by capsaicin pretreatment, although the effects of capsaicin pretreatment were significantly smaller than those of (+)-MK-801 hydrogen maleate. CONCLUSIONS These results indicate that nicotinic acetylcholine receptor activation in capsaicin sensitive C-fiber afferents in the bladder can induce detrusor overactivity. In the central nervous system nicotinic acetylcholine receptor activation in the spinal cord and brain has an excitatory and an inhibitory effect on the micturition reflex, respectively. In addition, the nicotine induced spinal excitatory effect may be mediated by the activation of glutamatergic mechanisms.
Collapse
MESH Headings
- Administration, Intravesical
- Animals
- Capsaicin/pharmacology
- Central Nervous System/metabolism
- Dose-Response Relationship, Drug
- Female
- Ganglia, Spinal/metabolism
- Injections, Intraventricular
- Injections, Spinal
- Mecamylamine/pharmacology
- Muscle Contraction/drug effects
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neurons, Afferent/metabolism
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Nicotinic Antagonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, Nicotinic/metabolism
- Receptors, Nicotinic/physiology
- Reflex/physiology
- Urinary Bladder/innervation
- Urinary Bladder/metabolism
- Urinary Bladder/physiology
- Urination/physiology
Collapse
Affiliation(s)
- Hitoshi Masuda
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Storage and periodic expulsion of urine is regulated by a neural control system in the brain and spinal cord that coordinates the reciprocal activity of two functional units in the lower urinary tract (LUT): (a) a reservoir (the urinary bladder) and (b) an outlet (bladder neck, urethra and striated muscles of the urethral sphincter). Control of the bladder and urethral outlet is dependent on three sets of peripheral nerves: parasympathetic, sympathetic and somatic nerves that contain afferent as well as efferent pathways. Afferent neurons innervating the bladder have A-delta or C-fibre axons. Urine storage reflexes are organized in the spinal cord, whereas voiding reflexes are mediated by a spinobulbospinal pathway passing through a coordination centre (the pontine micturition centre) located in the brainstem. Storage and voiding reflexes are activated by mechanosensitive A-delta afferents that respond to bladder distension. Many neurotransmitters including acetylcholine, norepinephrine, dopamine, serotonin, excitatory and inhibitory amino acids, adenosine triphosphate, nitric oxide and neuropeptides are involved in the neural control of the LUT. Injuries or diseases of the nervous system as well as disorders of the peripheral organs can produce LUT dysfunctions including: (1) urinary frequency, urgency and incontinence or (2) inefficient voiding and urinary retention. Neurogenic detrusor overactivity is triggered by C-fibre bladder afferent axons, many of which terminate in the close proximity to the urothelium. The urothelial cells exhibit 'neuron-like' properties that allow them to respond to mechanical and chemical stimuli and to release transmitters that can modulate the activity of afferent nerves.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Beckel JM, Kanai A, Lee SJ, de Groat WC, Birder LA. Expression of functional nicotinic acetylcholine receptors in rat urinary bladder epithelial cells. Am J Physiol Renal Physiol 2005; 290:F103-10. [PMID: 16144967 PMCID: PMC2760261 DOI: 10.1152/ajprenal.00098.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although nicotinic acetylcholine receptors in both the central and peripheral nervous systems play a prominent role in the control of urinary bladder function, little is known regarding expression or function of nicotinic receptors in the bladder epithelium, or urothelium. Nicotinic receptors have been described in epithelial cells lining the upper gastrointestinal tract, respiratory tract, and the skin. Thus the present study examined the expression and functionality of nicotinic receptors in the urothelium, as well as the effects of stimulation of nicotinic receptors on the micturition reflex. mRNA for the alpha3, alpha5, alpha7, beta3, and beta4 nicotinic subunits was identified in rat urothelial cells using RT-PCR. Western blotting also confirmed urothelial expression of the alpha3- and alpha7-subunits. Application of nicotine (50 nM) to cultured rat urothelial cells elicited an increase in intracellular Ca2+ concentration, indicating that at least some of the subunits form functional channels. These effects were blocked by the application of the nicotinic antagonist hexamethonium. During in vivo bladder cystometrograms in urethane-anesthetized rats, intravesical administration of nicotine, choline, or the antagonists methyllycaconitine citrate and hexamethonium elicited changes in voiding parameters. Intravesical nicotine (50 nM, 1 microM) increased the intercontraction interval. Intravesical choline (1-100 microM) also affected bladder reflexes similarly, suggesting that alpha7 nicotinic receptors mediate this effect. Intravesical administration of hexamethonium (1-100 microM) potentiated the nicotine-induced changes in bladder reflexes. Methyllycaconitine citrate, a specific alpha7-receptor antagonist, prevented nicotine-, choline-, and hexamethonium-induced bladder inhibition. These results are the first indication that stimulation of nonneuronal nicotinic receptors in the bladder can affect micturition.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Dept. of Pharmacology, Univ. of Pittsburgh School of Medicine, A1220 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Detrusor overactivity is a relatively common yet embarrassing symptom complex with significant impact on quality of life. The mainstay of current pharmacological treatment involves the use of muscarinic receptor antagonists, but their therapeutic effectiveness is limited by a combination of limited efficacy and troublesome side effects and has recently been challenged by Herbison et al. Recognition of the limitations of existing therapy has started the search for pharmacotherapeutic agents acting on alternative pathways underlying detrusor overactivity with the intention of improving storage symptoms of urgency, frequency and urge incontinence. RECENT FINDINGS Recent research has suggested that several transmitters may modulate bladder storage. However, no agents currently available, acting via mechanisms other than muscarinic receptors have entered clinical practice so far. It is clear that far from being a passive container for urine, the urothelium is a crucial area within the bladder wall and its functions are complex and only now beginning to be appreciated. The release of several neurotransmitters from urothelium in response to distension and its action on receptors on sensory neurons is being increasingly recognized. The role for this afferent stimulation on the micturition reflex is gradually gaining importance in the pathophysiology of detrusor overactivity. SUMMARY In this article, the recent developments in basic science related to the pathogenesis and pharmacological basis for future drug targets for effective management of overactive bladder are discussed.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Urology, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | | | |
Collapse
|
15
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2004; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
16
|
Gopalakrishnan M, Bitner RS. Neuronal nicotinic receptors: filling the void? Am J Physiol Regul Integr Comp Physiol 2003; 285:R21-2. [PMID: 12793987 DOI: 10.1152/ajpregu.00212.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|