1
|
Pal S, Bagchi AK, Henry DS, Landes RD, Mu S, Rhee SW, Rusch NJ, Stolarz AJ. Rhythmic Contractions of Lymph Vessels and Lymph Flow Are Disrupted in Hypertensive Rats. Hypertension 2025; 82:72-83. [PMID: 39502071 DOI: 10.1161/hypertensionaha.124.23194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Hypertension increases the risk of lymphedema in patients with comorbidities, but whether hypertension directly compromises lymph vessel (LV) function and lymph flow is unclear. We compared the contractions of mesenteric LVs ex vivo and lymph flow in vivo between normotensive and Ang II (angiotensin II)-induced hypertensive rats and explored the ionic basis of contractile patterns. Key studies were recapitulated in spontaneously hypertensive rats and control Wistar-Kyoto rats. METHODS Video microscopy continuously recorded the diameters of cannulated rat mesenteric LVs, and high-speed optical imaging estimated mesenteric lymph flow in vivo. Jess capillary Western electrophoresis evaluated expression levels of ion channel proteins. RESULTS Isolated LVs from Ang II-induced hypertensive rats exhibited dysrhythmic contractions, whereas LVs from both Ang II-induced hypertensive rats and spontaneously hypertensive rats exhibited reduced diastolic diameters and cross-sectional flow. Mesenteric lymph flow in vivo was 2.9-fold lower in Ang II-induced hypertensive rats compared with normotensive rats. Surprisingly, the LVs from Ang II-induced hypertensive rats expressed fewer intact L-type Ca2+ channel pore proteins and more modulatory cleaved C-terminal fragments. However, pharmacological block of voltage-gated K+ channels but not other K+ channel types in control LVs established the pattern of contractile dysfunction observed in hypertension. Jess capillary Western electrophoresis analysis confirmed a loss of Shaker-type KV1.2 channels in LVs from hypertensive rats. CONCLUSIONS We provide initial evidence of lymphatic contractile dysfunction and compromised lymph flow in hypertensive rats, which may be caused by a loss of KV1.2 channels in the lymphatic muscle cells.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy (S.P., A.K.B., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ashim K Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy (S.P., A.K.B., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - David S Henry
- Department of Pharmacology and Toxicology, College of Medicine (D.S.H., S.M., S.W.R., N.J.R., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Reid D Landes
- Department of Biostatistics, College of Medicine (R.D.L.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine (D.S.H., S.M., S.W.R., N.J.R., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine (D.S.H., S.M., S.W.R., N.J.R., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
- Now with Department of Biomedical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (S.W.R.)
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine (D.S.H., S.M., S.W.R., N.J.R., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy (S.P., A.K.B., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Pharmacology and Toxicology, College of Medicine (D.S.H., S.M., S.W.R., N.J.R., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
2
|
Singh R, Heaps CL, Muthuchamy M, Deveau MA, Stewart RH, Laine GA, Dongaonkar RM. Dichotomous effects of in vivo and in vitro ionizing radiation exposure on lymphatic function. Am J Physiol Heart Circ Physiol 2023; 324:H155-H171. [PMID: 36459446 DOI: 10.1152/ajpheart.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.
Collapse
Affiliation(s)
- Reetu Singh
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Cristine L Heaps
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | - Michael A Deveau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Glen A Laine
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ranjeet M Dongaonkar
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Mukherjee A, Nepiyushchikh Z, Michalaki E, Dixon JB. Lymphatic injury alters the contractility and mechanosensitivity of collecting lymphatics to intermittent pneumatic compression. J Physiol 2021; 599:2699-2721. [PMID: 33644884 DOI: 10.1113/jp281206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS We present the first in vivo evidence that lymphatic contraction can entrain with an external oscillatory mechanical stimulus. Lymphatic injury can alter collecting lymphatic contractility, but not much is known about how its mechanosensitivity to external pressure is affected, which is crucial given the current pressure application methods for treating lymphoedema. We show that oscillatory pressure waves (OPW), akin to intermittent pneumatic compression (IPC) therapy, optimally entrain lymphatic contractility and modulate function depending on the frequency and propagation speed of the OPW. We show that the OPW-induced entrainment and contractile function in the intact collecting lymphatics are enhanced 28 days after a contralateral lymphatic ligation surgery. The results show that IPC efficacy can be improved through proper selection of OPW parameters, and that collecting lymphatics adapt their function and mechanosensitivity after a contralateral injury, switching their behaviour to a pump-like configuration that may be more suited to the altered microenvironment. ABSTRACT Intermittent pneumatic compression (IPC) is commonly used to control the swelling due to lymphoedema, possibly modulating the collecting lymphatic function. Lymphoedema causes lymphatic contractile dysfunction, but the consequent alterations in the mechanosensitivity of lymphatics to IPC is not known. In the present work, the spatiotemporally varying oscillatory pressure waves (OPW) generated during IPC were simulated to study the modulation of lymphatic function by OPW under physiological and pathological conditions. OPW with three temporal frequencies and three propagation speeds were applied to rat tail collecting lymphatics. The entrainment of the lymphatics to OPW was significantly higher at a frequency of 0.05 Hz compared with 0.1 Hz and 0.2 Hz (P = 0.0054 and P = 0.014, respectively), but did not depend on the OPW propagation speed. Lymphatic function was significantly higher at a frequency of 0.05 Hz and propagation speed of 2.55 mm/s (P = 0.015). Exogenous nitric oxide was not found to alter OPW-induced entrainment. A contralateral lymphatic ligation surgery was performed to simulate partial lymphatic injury in rat tails. The intact vessels showed a significant increase in entrainment to OPW, 28 days after ligation (compared with sham) (P = 0.016), with a similar increase in lymphatic transport function (P = 0.0029). The results suggest an enhanced mechanosensitivity of the lymphatics, along with a transition to a pump-like behaviour, in response to a lymphatic injury. These results enhance our fundamental understanding of how lymphatic mechanosensitivity assists the coordination of lymphatic contractility and how this might be leveraged in IPC therapy.
Collapse
Affiliation(s)
- Anish Mukherjee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhanna Nepiyushchikh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
4
|
Stewart RH. A Modern View of the Interstitial Space in Health and Disease. Front Vet Sci 2020; 7:609583. [PMID: 33251275 PMCID: PMC7674635 DOI: 10.3389/fvets.2020.609583] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Increases in the volume of the interstitial space are readily recognized clinically as interstitial edema formation in the loose connective tissue of skin, mucosa, and lung. However, the contents and the hydrostatic pressure of this interstitial fluid can be very difficult to determine even in experimental settings. These difficulties have long obscured what we are beginning to appreciate is a dynamic milieu that is subject to both intrinsic and extrinsic regulation. This review examines current concepts regarding regulation of interstitial volume, pressure, and flow and utilizes that background to address three major topics of interest that impact IV fluid administration. The first of these started with the discovery that excess dietary salt can be stored non-osmotically in the interstitial space with minimal impact on vascular volume and pressures. This led to the hypothesis that, along with the kidney, the interstitial space plays an active role in the long-term regulation of blood pressure. Second, it now appears that hypovolemic shock leads to systemic inflammatory response syndrome principally through the entry of digestive enzymes into the intestinal interstitial space and the subsequent progression of enzymes and inflammatory agents through the mesenteric lymphatic system to the general circulation. Lastly, current evidence strongly supports the non-intuitive view that the primary factor leading to inflammatory edema formation is a decrease in interstitial hydrostatic pressure that dramatically increases microvascular filtration.
Collapse
Affiliation(s)
- Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
A novel mouse tail lymphedema model for observing lymphatic pump failure during lymphedema development. Sci Rep 2019; 9:10405. [PMID: 31320677 PMCID: PMC6639358 DOI: 10.1038/s41598-019-46797-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that many forms of secondary lymphedema in humans are driven by a progressive loss of lymphatic pump function after an initial risk-inducing event. However, the link between pump failure and disease progression has remained elusive due to experimental challenges in the clinical setting and a lack of adequate animal models. Using a novel surgical model of lymphatic injury, we track the adaptation and functional decline of the lymphatic network in response to surgery. This model mimics the histological hallmarks of the typical mouse tail lymphedema model while leaving an intact collecting vessel for analysis of functional changes during disease progression. Lymphatic function in the intact collecting vessel negatively correlated with swelling, while a loss of pumping pressure generation remained even after resolution of swelling. By using this model to study the role of obesity in lymphedema development, we show that obesity exacerbates acquired lymphatic pump failure following lymphatic injury, suggesting one mechanism through which obesity may worsen lymphedema. This lymphatic injury model will allow for future studies investigating the molecular mechanisms leading to lymphedema development.
Collapse
|
6
|
Morley ST, Walsh MT, Newport DT. Opportunities for Studying the Hydrodynamic Context for Breast Cancer Cell Spread Through Lymph Flow. Lymphat Res Biol 2017; 15:204-219. [PMID: 28749743 DOI: 10.1089/lrb.2017.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system serves as the primary route for the metastatic spread of breast cancer cells (BCCs). A scarcity of information exists with regard to the advection of BCCs in lymph flow and a fundamental understanding of the response of BCCs to the forces in the lymphatics needs to be established. This review summarizes the flow environment metastatic BCCs are exposed to in the lymphatics. Special attention is paid to the behavior of cells/particles in microflows in an attempt to elucidate the behavior of BCCs under lymph flow conditions (Reynolds number <1).
Collapse
Affiliation(s)
- Sinéad T Morley
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland
| | - Michael T Walsh
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland .,2 Health Research Institute, University of Limerick , Limerick, Ireland
| | - David T Newport
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
7
|
Morley ST, Walsh MT, Newport DT. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers. BIOMICROFLUIDICS 2017; 11:034105. [PMID: 28529671 PMCID: PMC5419862 DOI: 10.1063/1.4983149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 05/05/2023]
Abstract
The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100 μm square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = dp/H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions (Re < 1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo. This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.
Collapse
Affiliation(s)
- Sinéad T Morley
- School of Engineering, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - David T Newport
- School of Engineering, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
8
|
Dongaonkar RM, Nguyen TL, Quick CM, Heaps CL, Hardy J, Laine GA, Wilson E, Stewart RH. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps. Am J Physiol Regul Integr Comp Physiol 2014; 308:R391-9. [PMID: 25519727 DOI: 10.1152/ajpregu.00196.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymphangions, the segments of lymphatic vessels between two adjacent lymphatic valves, actively pump lymph. Acute changes in transmural pressure and lymph flow have profound effects on lymphatic pump function in vitro. Chronic changes in pressure and flow in vivo have also been reported to lead to significant changes in lymphangion function. Because changes in pressure and flow are both cause and effect of adaptive processes, characterizing adaptation requires a more fundamental analysis of lymphatic muscle properties. Therefore, the purpose of the present work was to use an intact lymphangion isovolumetric preparation to evaluate changes in mesenteric lymphatic muscle mechanical properties and the intracellular Ca(2+) in response to sustained mesenteric venous hypertension. Bovine mesenteric veins were surgically occluded to create mesenteric venous hypertension. Postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 6) and sham surgery (Sham; n = 6) animals were isolated and evaluated 3 days after the surgery. Spontaneously contracting MVH vessels generated end-systolic active tension and end-diastolic active tension lower than the Sham vessels. Furthermore, steady-state active tension and intracellular Ca(2+) concentration levels in response to KCl stimulation were also significantly lower in MVH vessels compared with those of the Sham vessels. There was no significant difference in passive tension in lymphatic vessels from the two groups. Taken together, these results suggest that following 3 days of mesenteric venous hypertension, postnodal mesenteric lymphatic vessels adapt to become weaker pumps with decreased cytosolic Ca(2+) concentration.
Collapse
Affiliation(s)
- R M Dongaonkar
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - T L Nguyen
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - C M Quick
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas;
| | - C L Heaps
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - J Hardy
- Large Animal Clinical Sciences, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - G A Laine
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - E Wilson
- Department of Medical Physiology, Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - R H Stewart
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| |
Collapse
|