1
|
Bolborea M, Vercruysse P, Daria T, Reiners JC, Alami NO, Guillot SJ, Dieterlé S, Sinniger J, Scekic-Zahirovic J, Londo A, Arcay H, Goy MA, de Tapia CN, Thal DR, Shibuya K, Otani R, Arai K, Kuwabara S, Ludolph AC, Roselli F, Yilmazer-Hanke D, Dupuis L. Loss of hypothalamic MCH decreases food intake in amyotrophic lateral sclerosis. Acta Neuropathol 2023; 145:773-791. [PMID: 37058170 PMCID: PMC10175407 DOI: 10.1007/s00401-023-02569-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.
Collapse
Affiliation(s)
- Matei Bolborea
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Pauline Vercruysse
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Tselmen Daria
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Johanna C Reiners
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
- Institute for Neurobiochemistry, Ulm University, Ulm, Germany
| | - Najwa Ouali Alami
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany
| | - Simon J Guillot
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Stéphane Dieterlé
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jérôme Sinniger
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Jelena Scekic-Zahirovic
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Amela Londo
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
| | - Hippolyte Arcay
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Marc-Antoine Goy
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Claudia Nelson de Tapia
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute for Pathology, Ulm University, Ulm, Germany
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU louvain, Belgium
- Department of Pathology, UZ Leuven, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Ryo Otani
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Albert C Ludolph
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Neurology Clinic, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy Section, Department of Neurology, Ulm University, Ulm, Germany.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes centraux et périphériques de la neurodégénérescence, UMR-S1118, Strasbourg, France.
| |
Collapse
|
2
|
Oatmen KE, Zile MR, Burnett JC, Spinale FG. Bioactive Signaling in Next-Generation Pharmacotherapies for Heart Failure: A Review. JAMA Cardiol 2019; 3:1232-1243. [PMID: 30484834 DOI: 10.1001/jamacardio.2018.3789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Importance The standard pharmacotherapy for heart failure (HF), particularly HF with reduced ejection fraction (HFrEF), is primarily through the use of receptor antagonists, notably inhibition of the renin-angiotensin system by either angiotensin-converting enzyme inhibition or angiotensin II receptor blockade (ARB). However, the completed Prospective Comparison of ARNI With an ACE-Inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial identified that the use of a single molecule (sacubitril/valsartan), which is an ARB and the neutral endopeptidase inhibitor (NEPi) neprilysin, yielded improved clinical outcomes in HFrEF compared with angiotensin-converting enzyme inhibition alone. Observations This review examined specific bioactive signaling pathways that would be potentiated by NEPi and how these would affect key cardiovascular processes relevant to HFrEF. It also addressed potential additive/synergistic effects of ARB. A number of biological signaling pathways that may be potentiated by sacubitril/valsartan were identified, including some novel candidate molecules, which will act in a synergistic manner to favorably alter the natural history of HFrEF. Conclusions and Relevance This review identified that activation rather than inhibition of specific receptor pathways provided favorable cardiovascular effects that cannot be achieved by renin-angiotensin system inhibition alone. Thus, an entirely new avenue of translational and clinical research lies ahead in which HF pharmacotherapies will move beyond receptor antagonist strategies.
Collapse
Affiliation(s)
- Kelsie E Oatmen
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia
| | - Michael R Zile
- Medical University of South Carolina, Charleston.,Ralph H. Johnson Department of VA Medical Center, Charleston, South Carolina
| | - John C Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia.,William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
3
|
Mikulášková B, Maletínská L, Zicha J, Kuneš J. The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 2016; 436:78-92. [PMID: 27450151 DOI: 10.1016/j.mce.2016.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.
Collapse
Affiliation(s)
- B Mikulášková
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - L Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - J Zicha
- Institute of Physiology AS CR, Prague, Czech Republic
| | - J Kuneš
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic.
| |
Collapse
|
4
|
Catestatin and GABA(A)R related feeding habits rely on dopamine, ghrelin plus leptin neuroreceptor expression variations. Physiol Behav 2016; 157:225-30. [PMID: 26875516 DOI: 10.1016/j.physbeh.2016.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Catestatin (CST), an endogenously small sympathoinhibitory peptide is capable of interfering with the major cerebral neuroreceptor-blocking site, i.e. γ-aminobutyric acidA receptor (GABAAR) system especially in limbic brain areas that are involved with feeding behaviors. The GABAARergic-related effects seem to derive from its interaction with other molecular neuroreceptors such as dopaminergic, ghrelin and leptinergic. In this context, the present study aimed to investigate probable feeding responses (eating and drinking) induced by treatment with CST and the GABAAR antagonist bicucullin (BIC) alone or simultaneously (CST+BIC) in the Syrian hibernating hamster (Mesocricetus auratus) model. Hamsters that received these compounds via intracerebroventricular infusions displayed notable variations of feeding and drinking bouts. In particular, an anorexigenic response was evident following treatment with CST while BIC evoked a significant increase of eating and drinking behaviors. Surprisingly when both agents were given simultaneously, a predominating anorexigenic response was detected as shown by evident CST-dependent reduction of feeding bouts. Contextually such behaviors, especially those following the combined treatment were tightly correlated with the significantly increased cerebral dopamine receptor 1 (D1) plus reduced ghrelin receptor (GhsR) and leptin receptor (LepR) transcript levels. Overall, the anorexigenic effect of CST deriving from its tight interaction with GABAARs activity plus D1 and GhsR transcripts tends to propose these neuronal elements as pivotal factors responsible for feeding disorders.
Collapse
|
5
|
Hayward LF, Hampton EE, Ferreira LF, Christou DD, Yoo JK, Hernandez ME, Martin EJ. Chronic heart failure alters orexin and melanin concentrating hormone but not corticotrophin releasing hormone-related gene expression in the brain of male Lewis rats. Neuropeptides 2015; 52:67-72. [PMID: 26111703 DOI: 10.1016/j.npep.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of chronic heart failure (HF; 16 weeks post left coronary artery ligation) on the brain's orexin (ORX) and related neuropeptide systems. METHODS Indicators of cardiac function, including the percent fractional shortening (%FS) left ventricular posterior wall shortening velocity (LVPWSV) were assessed via echocardiography at 16 weeks post myocardial infarction or sham treatment in male Lewis rats (n=5/group). Changes in gene expression in HF versus control (CON) groups were quantified by real-time PCR in the hypothalamus, amygdala and dorsal pons. RESULTS HF significantly reduced both the %FS and LVPWSV when compared to CON animals (P<0.02). In the hypothalamus ORX gene expression was significantly reduced in HF and correlated with changes in cardiac function when compared to CON (P<0.02). No significant changes in hypothalamic ORX receptor (type 1 or type 2) gene expression were identified. Alternatively hypothalamic melanin concentrating hormone (MCH) gene expression was significantly upregulated in HF animals and negatively correlated with LVPWSV (P<0.006). In both the amygdala and dorsal pons ORX type 2 receptor expression was significantly down-regulated in HF compared to CON. ORX receptor type 1, CRH and CRH type 1 and type 2 receptor expressions were unchanged by HF in all brain regions analyzed. CONCLUSION These observations support previous work demonstrating that cardiovascular disease modulates the ORX system and identify that in the case of chronic HF the ORX system is altered in parallel with changes in MCH expression but independent of any significant changes in the central CRH system. This raises the new possibility that ORX and MCH systems may play an important role in the pathophysiology of HF.
Collapse
Affiliation(s)
- Linda F Hayward
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| | - Erin E Hampton
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| | - Leonardo F Ferreira
- University of Florida, College of Health and Human Performance, Dept. of Applied Physiology and Kinesiology, Gainesville, FL 32610, United States
| | - Demetra D Christou
- University of Florida, College of Health and Human Performance, Dept. of Applied Physiology and Kinesiology, Gainesville, FL 32610, United States
| | - Jeung-Ki Yoo
- University of Florida, College of Health and Human Performance, Dept. of Applied Physiology and Kinesiology, Gainesville, FL 32610, United States
| | - Morgan E Hernandez
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| | - Eric J Martin
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| |
Collapse
|
7
|
Li N, Nattie E, Li A. The role of melanin concentrating hormone (MCH) in the central chemoreflex: a knockdown study by siRNA in the lateral hypothalamus in rats. PLoS One 2014; 9:e103585. [PMID: 25084113 PMCID: PMC4118894 DOI: 10.1371/journal.pone.0103585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Melanin concentrating hormone (MCH), a neuropeptide produced mainly in neurons localized to the lateral hypothalamic area (LHA), has been implicated in the regulation of food intake, energy balance, sleep state, and the cardiovascular system. Hypothalamic MCH neurons also have multisynaptic connections with diaphragmatic motoneurons and project to many central chemoreceptor sites. However, there are few studies of MCH involvement in central respiratory control. To test the hypothesis that MCH plays a role in the central chemoreflex, we induced a down regulation of MCH in the central nervous system by knocking down the MCH precursor (pMCH) mRNA in the LHA using a pool of small interfering RNA (siRNA), and measured the resultant changes in breathing, metabolic rate, body weight, and blood glucose levels in conscious rats. The injections of pMCH-siRNA into the LHA successfully produced a ∼62% reduction of pMCH mRNA expression in the LHA and a ∼43% decrease of MCH levels in the cerebrospinal fluid relative to scrambled-siRNA treatment (P = 0.006 and P = 0.02 respectively). Compared to the pretreatment baseline and the scrambled-siRNA treated control rats, knockdown of MCH resulted in: 1) an enhanced hypercapnic chemoreflex (∼42 & 47% respectively; P < 0.05) only in wakefulness; 2) a decrease in body weight and basal glucose levels; and 3) an unchanged metabolic rate. Our results indicate that MCH participates not only in the regulation of glucose and sleep-wake homeostasis but also the vigilance-state dependent regulation of the central hypercapnic chemoreflex and respiratory control.
Collapse
Affiliation(s)
- Ningjing Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
8
|
Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014; 7:19-29. [PMID: 26483897 PMCID: PMC4521687 DOI: 10.1016/j.slsci.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, Los Angeles, USA
- UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|