1
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
2
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
3
|
Noh CS, Chung HY, Han IH, Kim JH, Kim YM, Ryu JS. Mast cell tryptase-PAR2 pathway in proliferation of prostatic stromal cells reacted with Trichomonas vaginalis. Parasite Immunol 2021; 43:e12868. [PMID: 33991355 DOI: 10.1111/pim.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
We investigated whether tryptase released from mast cells activated by prostate stromal cells (PSC) reacted with Trichomonas vaginalis (Tv) promoted the proliferation of PSC through protease- activated receptor 2 (PAR2). Conditioned medium of PSC was prepared by stimulating them with Tv (Trichomonad-conditioned medium (TCM)), and mast cell-conditioned medium were prepared by incubating them with TCM (mast cell-TCM (M-TCM)). Mast cells incubated with TCM migrated more efficiently and produced more β-hexosaminidase and tryptase. M-TCM containing tryptase increased the proliferation of PSC, while inhibition of tryptase decreased proliferation. Expression of signalling molecules such as PAR2, p-ERK, COX-2, 15d-PGJ2 and PPARγ, known to be involved in the tryptase-PAR2 pathway, increased in response to M-TCM, and blocking any of these signals decreased proliferation, indicating that tryptase-PAR2 signalling is involved in the proliferation of PSC. Inhibition of tryptase and PAR2 led to reduced expression of PAR2, p-ERK, COX-2, 15d-PGJ2 and PPARγ, while inhibition of ERK or COX-2 reduced the expression of COX-2, 15d-PGJ2 and PPARγ indicating that the tryptase-PAR2 pathway proceeds in the order p-ERK, COX-2, 15d-PGJ2 , and PPARγ. These results show that interaction between PSC stimulated with Tv and mast cells causes proliferation of PSC through the tryptase-PAR2 pathway.
Collapse
Affiliation(s)
- Chang-Suk Noh
- Department of Internal Medicine, Seongnam Citizen Medical Center, Seongnam, Korea
| | - Hyo-Yeoung Chung
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Yu-Mi Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Seoul, Korea
| |
Collapse
|
4
|
Ardizzone A, Fusco R, Casili G, Lanza M, Impellizzeri D, Esposito E, Cuzzocrea S. Effect of Ultra-Micronized-Palmitoylethanolamide and Acetyl-l-Carnitine on Experimental Model of Inflammatory Pain. Int J Mol Sci 2021; 22:1967. [PMID: 33671213 PMCID: PMC7922157 DOI: 10.3390/ijms22041967] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Palmitoylethanolamide (PEA), a fatty acid amide, has been widely investigated for its analgesic and anti-inflammatory properties. The ultra-micronized formulation of PEA (um-PEA), that has an enhanced rate of dissolution, is extensively used. Acetyl-l-carnitine (LAC), employed for the treatment of neuropathic pain in humans, is able to cause analgesia by up-regulating type-2 metabotropic glutamate (mGlu2) receptors. In the present study, we tested different associations of um-PEA, LAC and non-micronized PEA (non-m-PEA) in a rat model of carrageenan (CAR)-induced paw edema. Intraplantar injection of CAR into the hind paw of animals caused edema, thermal hyperalgesia, accumulation of infiltrating inflammatory cells and augmented myeloperoxidase (MPO) activity. All these parameters were decreased in a significantly manner by oral administration of a compound constituted by a mixture of um-PEA and LAC in relation 1:1 (5 mg/kg), but not with the association of single compounds administered one after the other. These findings showed the superior anti-inflammatory and anti-nociceptive action displayed by oral administration of um-PEA and LAC versus LAC plus, separate but consecutive, um-PEA in the rat paw CAR model of inflammatory pain.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
5
|
Yang Y, Zhang H, Lu Q, Liu X, Fan Y, Zhu J, Sun B, Zhao J, Dong X, Li L. Suppression of adenosine A 2a receptors alleviates bladder overactivity and hyperalgesia in cyclophosphamide-induced cystitis by inhibiting TRPV1. Biochem Pharmacol 2020; 183:114340. [PMID: 33189675 DOI: 10.1016/j.bcp.2020.114340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a type of chronic bladder inflammation characterized by increased voiding frequency, urgency and pelvic pain. The sensitization of bladder afferents is widely regarded as one of the pathophysiological changes in the development of IC/BPS. There is evidence that adenosine A2a receptors are involved in regulating the sensitization of sensory afferents. However, the effect of adenosine A2a receptors on cystitis remains unknown. In the present study, a rat model of chronic cystitis was established by intraperitoneal injection with cyclophosphamide (CYP). Cystometry and behavioral tests were performed to investigate bladder micturition function and nociceptive pain. The rats with chronic cystitis showed symptoms of bladder overactivity, characterized by an increase in bladder voiding frequency and voiding pressure. CYP treatment significantly increased the expression of the A2a receptor in bladder afferent fibers and dorsal root ganglion (DRG) neurons. The A2a receptor antagonist ZM241385 prevented bladder overactivity and hyperalgesia elicited by CYP-induced cystitis. In addition, the A2a receptor and TRPV1 were coexpressed on DRG neurons. The TRPV1 antagonist capsazepine blocked bladder overactivity induced by the A2a receptor agonist CGS21680. In contrast, ZM241385 significantly inhibited the capsaicin-induced increase in intracellular calcium concentration in DRG neurons. These results suggest that suppression of adenosine A2a receptors in bladder afferents alleviates bladder overactivity and hyperalgesia elicited by CYP-induced cystitis in rats by inhibiting TRPV1, indicating that the adenosine A2a receptor in bladder afferents is a potential therapeutic target for the treatment of IC/BPS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Xin Liu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Yi Fan
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
6
|
Sekiguchi F, Tsubota M, Kawabata A. Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull 2018; 41:1127-1134. [PMID: 30068860 DOI: 10.1248/bpb.b18-00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are classified into high-voltage-activated (HVA) channels and low-voltage-activated channels consisting of Cav3.1-3.3, known as T ("transient")-type VGCC. There is evidence that certain types of HVA channels are involved in neurogenic inflammation and inflammatory pain, in agreement with reports indicating the therapeutic effectiveness of gabapentinoids, ligands for the α2δ subunit of HVA, in treating not only neuropathic, but also inflammatory, pain. Among the Cav3 family members, Cav3.2 is abundantly expressed in the primary afferents, regulating both neuronal excitability at the peripheral terminals and spontaneous neurotransmitter release at the spinal terminals. The function and expression of Cav3.2 are modulated by a variety of inflammatory mediators including prostanoids and hydrogen sulfide (H2S), a gasotransmitter. The increased activity of Cav3.2 by H2S participates in colonic, bladder and pancreatic pain, and regulates visceral inflammation. Together, VGCCs are involved in inflammation and inflammatory pain, and Cav3.2 T-type VGCC is especially a promising therapeutic target for the treatment of visceral inflammatory pain in patients with irritable bowel syndrome, interstitial cystitis/bladder pain syndrome, pancreatitis, etc., in addition to neuropathic pain.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University
| |
Collapse
|
7
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
8
|
Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: Involvement of TRPV1 and T-type Ca 2+ channels. J Pharmacol Sci 2017; 136:46-49. [PMID: 29289470 DOI: 10.1016/j.jphs.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023] Open
Abstract
We studied the pronociceptive role of proteinase-activated receptor-2 (PAR2) in mouse bladder. In female mice, intravesical infusion of the PAR2-activating peptide, SLIGRL-amide (SL), caused delayed mechanical hypersensitivity in the lower abdomen, namely 'referred hyperalgesia', 6-24 h after the administration. The PAR2-triggered referred hyperalgesia was prevented by indomethacin or a selective TRPV1 blocker, and restored by a T-type Ca2+ channel blocker. In human urothelial T24 cells, SL caused delayed prostaglandin E2 production and COX-2 upregulation. Our data suggest that luminal PAR2 stimulation in the bladder causes prostanoid-dependent referred hyperalgesia in mice, which involves the activation of TRPV1 and T-type Ca2+ channels.
Collapse
|
9
|
Petrosino S, Campolo M, Impellizzeri D, Paterniti I, Allarà M, Gugliandolo E, D'Amico R, Siracusa R, Cordaro M, Esposito E, Di Marzo V, Cuzzocrea S. 2-Pentadecyl-2-Oxazoline, the Oxazoline of Pea, Modulates Carrageenan-Induced Acute Inflammation. Front Pharmacol 2017; 8:308. [PMID: 28611664 PMCID: PMC5448350 DOI: 10.3389/fphar.2017.00308] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
N-acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, with N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic and neuroprotective activities. Because PEA is produced on demand and exerts pleiotropic effects, the modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here we investigate the effect of 2-Pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA, on human recombinant NAAA in vitro and in an established model of Carrageenan (CAR)-induced rat paw inflammation. PEA-OXA dose-dependently significantly inhibited recombinant NAAA and, orally administered to rats (10 mg/kg), limiting histological damage, thermal hyperalgesia and the increase of infiltrating inflammatory cells after CAR injection in the rat right hindpaw, compared to ultramicronized PEA given orally at the same dose (10 mg/kg). These effects were accompanied by elevation of paw PEA levels. Moreover, PEA-OXA markedly reduced neutrophil infiltration and pro-inflammatory cytokine release and prevented CAR-induced IκB-α degradation, nuclear translocation of NF-κB p65, the increase of inducible nitric oxide synthase, cyclooxygenase-2, intercellular adhesion molecule-1, and mast cell activation. Experiments in PPAR-α knockout mice showed that the anti-inflammatory effects of PEA-OXA were not dependent on the presence of PPAR-α receptors. In conclusion, NAAA modulators as PEA-OXA could help to maximize the tissue availability of PEA by increasing its levels and anti-inflammatory effects.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy.,Epitech Group SpASaccolongo, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy.,Epitech Group SpASaccolongo, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| |
Collapse
|
10
|
Li S, Guan J, Ge M, Huang P, Lin Y, Gan X. Intestinal mucosal injury induced by tryptase-activated protease-activated receptor 2 requires β-arrestin-2 in vitro. Mol Med Rep 2015; 12:7181-7. [PMID: 26398586 DOI: 10.3892/mmr.2015.4325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Tryptase exacerbates intestinal ischemia-reperfusion injury, however, the direct role of tryptase in intestinal mucosal injury and the underlying mechanism remains largely unknown. Protease-activated receptor 2 (PAR‑2), commonly activated by tryptase, interacts with various adaptor proteins, including β‑arrestin‑2. The present study aimed to determine whether tryptase is capable of inducing intestinal mucosal cell injury via PAR‑2 activation and to define the role of β‑arrestin‑2 in the process of injury. The IEC‑6 rat intestinal epithelial cell line was challenged by tryptase stimulation. Cell viability, lactate dehydrogenase (LDH) activity and apoptosis were analyzed to determine the severity of cell injury. Injury was also evaluated following treatments with specific PAR‑2 and extracellular signal‑related kinases (ERK) inhibitors, and knockdown of β‑arrestin‑2. PAR‑2, ERK and β‑arrestin‑2 protein expression levels were evaluated. Tryptase treatment (100 and 1,000 ng/ml) resulted in IEC‑6 cell injury, as demonstrated by significant reductions in cell viability, accompanied by concomitant increases in LDH activity and levels of cleaved caspase‑3 protein expression. Furthermore, tryptase treatment led to a marked increase in PAR‑2 and phosphorylated‑ERK expression, and exposure to specific PAR‑2 and ERK inhibitors eliminated the changes induced by tryptase. Knockdown of β‑arrestin‑2 blocked tryptase‑mediated cell injury, whereas tryptase exerted no influence on β‑arrestin‑2 expression in IEC‑6 cells. These data indicate that tryptase may directly damage IEC‑6 cells via PAR-2 and the downstream activation of ERK, and demonstrate that the signaling pathway requires β-arrestin-2.
Collapse
Affiliation(s)
- Shun Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianqiang Guan
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pinjie Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yiquan Lin
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoliang Gan
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
11
|
Attenuation of cystitis and pain sensation in mice lacking fatty acid amide hydrolase. J Mol Neurosci 2014; 55:968-76. [PMID: 25374388 DOI: 10.1007/s12031-014-0453-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
Abstract
Endocannabinoids, such as N-arachidonoylethanolamine (AEA, also called anandamide), exert potent analgesic and anti-inflammatory effects. Fatty acid amide hydrolase (FAAH) is primarily responsible for degradation of AEA, and deletion of FAAH increases AEA content in various tissues. Since FAAH has been shown to be present in the bladder of various species, we compared bladder function, severity of experimental cystitis, and cystitis-associated referred hyperalgesia in male wild-type (WT) and FAAH knock-out (KO) mice. Basal concentrations of AEA were greater, and the severity of cyclophosphamide (CYP)-induced cystitis was reduced in bladders from FAAH KO compared to WT mice. Cystitis-associated increased peripheral sensitivity to mechanical stimuli and enhanced bladder activity (as reflected by increased voiding frequency) were attenuated in FAAH KO compared to WT mice. Further, abundances of mRNA for several pro-inflammatory compounds were increased in the bladder mucosa after CYP treatment of WT mice, and this increase was inhibited in FAAH KO mice. These data indicate that endogenous substrates of FAAH, including the cannabinoid AEA, play an inhibitory role in bladder inflammation and subsequent changes in pain perception. Therefore, FAAH could be a therapeutic target to treat clinical symptoms of painful inflammatory bladder diseases.
Collapse
|
12
|
Effect of inflammatory mediators on ATP release of human urothelial RT4 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182862. [PMID: 24839598 PMCID: PMC4009244 DOI: 10.1155/2014/182862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Abstract
Inflammation is an important contributor to the aetiology of a number of bladder dysfunctions including interstitial cystitis, painful bladder syndrome, and overactive bladder. The aim of this study was to examine the effects of inflammatory mediators on urothelial ATP release. Human urothelial RT4 cells were exposed to normal buffer or varying concentrations of inflammatory mediators (bradykinin, histamine, and serotonin) in the presence or absence of hypotonic stretch stimuli (1 : 2 dilution of Krebs-Henseleit buffer). Others have demonstrated that bradykinin increased stretch-induced ATP release; however, we observed no change in control or stretch-induced ATP release with bradykinin. Pretreatment of RT4 cells with histamine or serotonin decreased stretch-induced ATP release (P = 0.037, P = 0.040, resp.). Previous studies have demonstrated increased ATP release in response to inflammation utilising whole bladder preparations in contrast to our simple model of cultured urothelial cells. The current study suggests that it is unlikely that there is a direct interaction between the release of inflammatory mediators and increased ATP release, but rather more complex interactions occurring in response to inflammation that lead to increased bladder sensation.
Collapse
|
13
|
Marentette JO, Hauser PJ, Hurst RE, Klumpp DJ, Rickard A, McHowat J. Tryptase activation of immortalized human urothelial cell mitogen-activated protein kinase. PLoS One 2013; 8:e69948. [PMID: 23922867 PMCID: PMC3726738 DOI: 10.1371/journal.pone.0069948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS) is multifactorial, but likely involves urothelial cell dysfunction and mast cell accumulation in the bladder wall. Activated mast cells in the bladder wall release several inflammatory mediators, including histamine and tryptase. We determined whether mitogen-activated protein (MAP) kinases are activated in response to tryptase stimulation of urothelial cells derived from human normal and IC/PBS bladders. Tryptase stimulation of normal urothelial cells resulted in a 2.5-fold increase in extracellular signal regulated kinase 1/2 (ERK 1/2). A 5.5-fold increase in ERK 1/2 activity was observed in urothelial cells isolated from IC/PBS bladders. No significant change in p38 MAP kinase was observed in tryptase-stimulated normal urothelial cells but a 2.5-fold increase was observed in cells isolated from IC/PBS bladders. Inhibition of ERK 1/2 with PD98059 or inhibition of p38 MAP kinase with SB203580 did not block tryptase-stimulated iPLA2 activation. Incubation with the membrane phospholipid-derived PLA2 hydrolysis product lysoplasmenylcholine increased ERK 1/2 activity, suggesting the iPLA2 activation is upstream of ERK 1/2. Real time measurements of impedance to evaluate wound healing of cell cultures indicated increased healing rates in normal and IC/PBS urothelial cells in the presence of tryptase, with inhibition of ERK 1/2 significantly decreasing the wound healing rate of IC/PBS urothelium. We conclude that activation of ERK 1/2 in response to tryptase stimulation may facilitate wound healing or cell motility in areas of inflammation in the bladder associated with IC/PBS.
Collapse
Affiliation(s)
- John O. Marentette
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Paul J. Hauser
- Department of Urology, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert E. Hurst
- Department of Urology, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David J. Klumpp
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Alice Rickard
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lamina propria: The functional center of the bladder? Neurourol Urodyn 2013; 33:9-16. [DOI: 10.1002/nau.22465] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/07/2022]
|
15
|
Wang ZY, Wang P, Bjorling DE. Activation of cannabinoid receptor 2 inhibits experimental cystitis. Am J Physiol Regul Integr Comp Physiol 2013; 304:R846-53. [PMID: 23515618 DOI: 10.1152/ajpregu.00585.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1and CB2). Both CB1 and CB2 are present in bladders of various species, including human, monkey, and rodents, and it appears that CB2 is highly expressed in urothelial cells. We investigated whether treatment with the CB2 agonist GP1a alters severity of experimental cystitis induced by acrolein and referred mechanical hyperalgesia associated with cystitis. We also investigated whether the mitogen-activated protein kinases (MAPK), ERK1/2, p38, and JNK are involved in the functions of CB2. We found that treatment with the selective CB2 agonist GP1a (1-10 mg/kg, ip) inhibited the severity of bladder inflammation 3 h after intravesical instillation of acrolein in a dose-dependent manner, and inhibition reached significance at a dose of 10 mg/kg (P < 0.05). Treatment with GP1a (10 mg/kg) inhibited referred mechanical hyperalgesia associated with cystitis (P < 0.05). The inhibitory effects of the CB2 agonist were prevented by the selective CB2 antagonist AM630 (10 mg/kg, sc). We further demonstrated the inhibitory effects of CB2 appear to be at least partly mediated by reducing bladder inflammation-induced activation of ERK1/2 MAPK pathway. The results of the current study indicate that CB2 is a potential therapeutic target for treatment of bladder inflammation and pain in patients.
Collapse
Affiliation(s)
- Zun-Yi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
16
|
Feng B, La JH, Schwartz ES, Gebhart GF. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1085-98. [PMID: 22403791 PMCID: PMC3362095 DOI: 10.1152/ajpgi.00542.2011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is characterized as functional because a pathobiological cause is not readily apparent. Considerable evidence, however, documents that sensitizing proinflammatory and lipotoxic lipids, mast cells and their products, tryptases, enteroendocrine cells, and mononuclear phagocytes and their receptors are increased in tissues of IBS patients with colorectal hypersensitivity. It is also clear from recordings in animals of the colorectal afferent innervation that afferents exhibit long-term changes in models of persistent colorectal hypersensitivity. Such changes in afferent excitability and responses to mechanical stimuli are consistent with relief of discomfort and pain in IBS patients, including relief of referred abdominal hypersensitivity, upon intra-rectal instillation of local anesthetic. In the aggregate, these experimental outcomes establish the importance of afferent drive in IBS, consistent with a larger literature with respect to other chronic conditions in which pain is a principal complaint (e.g., neuropathic pain, painful bladder syndrome, fibromyalgia). Accordingly, colorectal afferents and the environment in which these receptive endings reside constitute the focus of this review. That environment includes understudied and incompletely understood contributions from immune-competent cells resident in and recruited into the colorectum. We close this review by highlighting deficiencies in existing knowledge and identifying several areas for further investigation, resolution of which we anticipate would significantly advance our understanding of neural and neuro-immune contributions to IBS pain and hypersensitivity.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jun Ho La
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erica S. Schwartz
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - G. F. Gebhart
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Miki T, Matsunami M, Nakamura S, Okada H, Matsuya H, Kawabata A. ONO-8130, a selective prostanoid EP1 receptor antagonist, relieves bladder pain in mice with cyclophosphamide-induced cystitis. Pain 2011; 152:1373-1381. [PMID: 21396778 DOI: 10.1016/j.pain.2011.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 01/09/2023]
Abstract
Given the previous evidence for involvement of prostanoid EP1 receptors in facilitation of the bladder afferent nerve activity and micturition reflex, the present study investigated the effect of ONO-8130, a selective EP1 receptor antagonist, on cystitis-related bladder pain in mice. Cystitis in mice was produced by intraperitoneal administration of cyclophosphamide at 300mg/kg. Bladder pain-like nociceptive behavior and referred hyperalgesia were assessed in conscious mice. Phosphorylation of extracellular signal-regulated kinase (ERK) in the L6 spinal cord was determined by immunohistochemistry in anesthetized mice. Cyclophosphamide treatment caused bladder pain-like nociceptive behavior and referred hyperalgesia accompanying cystitis symptoms, including increased bladder weight and vascular permeability and upregulation of cyclooxygenase-2 in the bladder tissue. Oral preadministration of ONO-8130 at 0.3-30 mg/kg strongly prevented both the bladder pain-like behavior and referred hyperalgesia in a dose-dependent manner, but had slight effect on the increased bladder weight and vascular permeability. Oral ONO-8130 at 30 mg/kg also reversed the established cystitis-related bladder pain. Intravesical administration of prostaglandin E2 caused prompt phosphorylation of ERK in the L6 spinal cord, an effect blocked by ONO-8130. Our findings strongly suggest that the prostaglandin E2/EP1 system participates in processing of cystitis-related bladder pain, and that EP1 antagonists including ONO-8130 are useful for treatment of bladder pain, particularly in interstitial cystitis. Prostaglandin E2 contributes to cystitis-related bladder pain via EP1 receptors in mice, indicating possible therapeutic usefulness of selective EP1 antagonists.
Collapse
Affiliation(s)
- Takahiro Miki
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan Pharmacological Research Laboratories, Ono Pharmaceutical Co, Ltd, Osaka 618-8585, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Amiable N, Martel-Pelletier J, Lussier B, Kwan Tat S, Pelletier JP, Boileau C. Proteinase-activated receptor-2 gene disruption limits the effect of osteoarthritis on cartilage in mice: a novel target in joint degradation. J Rheumatol 2011; 38:911-20. [PMID: 21285164 DOI: 10.3899/jrheum.100710] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Evidence indicates that proteinase-activated receptor (PAR)-2 participates in the degradative processes of human osteoarthritis (OA). We evaluated the in vivo effect of PAR-2 on articular lesions in a PAR-2-knockout (KO) mouse model of OA. METHODS OA was surgically induced by destabilization of the medial meniscus of the right knee in C57Bl/6 wild-type (WT) and PAR-2 KO mice. Knee swelling was measured throughout the duration of the study (8 weeks postsurgery) and histologic evaluation of cartilage was done to assess structure, cellularity, matrix staining, and remodeling in the deep zone. Morphometric analysis of subchondral bone was also performed. RESULTS Data showed significant knee swelling in the operated WT mice immediately following surgery, which increased with time (8 weeks post-surgery). Knee swelling was significantly lower (p ≤ 0.0001) in PAR-2 KO mice than in WT mice at both 4 and 8 weeks postsurgery. Cartilage damage was found in both operated WT and PAR-2 KO mice; however, lesions were significantly less severe (global score; p ≤ 0.05) in the PAR-2 KO mice at 4 weeks postsurgery. Operated WT mice showed reduced subchondral bone surface and trabecular thickness with significance reached at 4 weeks (p ≤ 0.03 and p ≤ 0.05, respectively), while PAR-2 KO mice demonstrated a gradual increase in subchondral bone surface with significance reached at 8 weeks (p ≤ 0.007). CONCLUSION We demonstrated the in vivo implication of PAR-2 in the development of experimental OA, thus confirming its involvement in OA joint structural changes and reinforcing the therapeutic potential of a PAR-2 antagonist for treatment of OA.
Collapse
Affiliation(s)
- Nathalie Amiable
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre, Notre-Dame Hospital, 1560 Sherbrooke Street East, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Santoso AGH, Lo WN, Liang W. Urothelium-dependent and urothelium-independent detrusor contractility mediated by nitric oxide synthase and cyclooxygenase inhibition. Neurourol Urodyn 2011; 30:619-25. [DOI: 10.1002/nau.21015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022]
|
20
|
Shie JH, Kuo HC. Higher levels of cell apoptosis and abnormal E-cadherin expression in the urothelium are associated with inflammation in patients with interstitial cystitis/painful bladder syndrome. BJU Int 2010; 108:E136-41. [DOI: 10.1111/j.1464-410x.2010.09911.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Current world literature. Curr Opin Urol 2010; 20:443-51. [PMID: 20679773 DOI: 10.1097/mou.0b013e32833dde0d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|