1
|
Quintiero V, Crisafulli O, Diotti D, Tupler R, Negro M, Lavaselli E, D’Antona G. State-of-the-Art and Future Challenges for Nutritional Interventions in Facioscapulohumeral Dystrophy: A Narrative Review. Nutrients 2025; 17:1056. [PMID: 40292463 PMCID: PMC11944979 DOI: 10.3390/nu17061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Facioscapulohumeral dystrophy (FSHD), the second most common inherited muscular dystrophy in adulthood, is characterized by progressive muscle loss, accompanied by an increase in fat mass. Beyond these alterations in body composition, which contribute to the risk of sarcopenic obesity, FSHD is associated with systemic inflammation and oxidative stress. These interconnected mechanisms may worsen muscle atrophy, leading to a decline in physical efficiency and quality of life. While the therapeutic benefits of physical therapy and exercise have been investigated, the impact of dietary interventions remains underexplored. Given the established role of nutrition in managing various chronic diseases, there is growing interest in understanding how it might influence the clinical management of FSHD. By addressing current gaps in the literature, this review aims to investigate the potential role of dietary patterns and specific nutrients in modulating muscle metabolism within the context of FSHD. Some studies have indicated various compounds (flavonoids, curcumin, L-carnitine, coenzyme Q10, and omega-3), vitamins (C and E), and minerals (zinc and selenium) with antioxidant and anti-inflammatory properties as promising treatment strategies for FSHD. Instead, few data regarding the effects of proteins and creatine supplementation are available. Furthermore, the potential benefits of essentials amino acids, β-hydroxy-β-methylbutyrate, and vitamin D in contrasting muscle atrophy and enhancing muscle function remain unexplored. Despite these preliminary findings, the existing body of evidence is limited. Identifying novel therapeutic strategies to complement existing treatments could provide a more comprehensive management framework, aimed at improving the long-term health outcomes and quality of life of FSHD patients.
Collapse
Affiliation(s)
- Venere Quintiero
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
| | - Oscar Crisafulli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
| | - Daniele Diotti
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
| | - Emanuela Lavaselli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy (D.D.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Muscle Protein Synthesis Responses Following Aerobic-Based Exercise or High-Intensity Interval Training with or Without Protein Ingestion: A Systematic Review. Sports Med 2022; 52:2713-2732. [PMID: 35675022 PMCID: PMC9585015 DOI: 10.1007/s40279-022-01707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Systematic investigation of muscle protein synthesis (MPS) responses with or without protein ingestion has been largely limited to resistance training. OBJECTIVE This systematic review determined the capacity for aerobic-based exercise or high-intensity interval training (HIIT) to stimulate post-exercise rates of MPS and whether protein ingestion further significantly increases MPS compared with placebo. METHODS Three separate models analysed rates of either mixed, myofibrillar, sarcoplasmic, or mitochondrial protein synthesis (PS) following aerobic-based exercise or HIIT: Model 1 (n = 9 studies), no protein ingestion; Model 2 (n = 7 studies), peri-exercise protein ingestion with no placebo comparison; Model 3 (n = 14 studies), peri-exercise protein ingestion with placebo comparison. RESULTS Eight of nine studies and all seven studies in Models 1 and 2, respectively, demonstrated significant post-exercise increases in either mixed or a specific muscle protein pool. Model 3 observed significantly greater MPS responses with protein compared with placebo in either mixed or a specific muscle fraction in 7 of 14 studies. Seven studies showed no difference in MPS between protein and placebo, while three studies reported no significant increases in mitochondrial PS with protein compared with placebo. CONCLUSION Most studies reporting significant increases in MPS were confined to mixed and myofibrillar PS that may facilitate power generating capacity of working skeletal muscle with aerobic-based exercise and HIIT. Only three of eight studies demonstrated significant increases in mitochondrial PS post-exercise, with no further benefits of protein ingestion. This lack of change may be explained by the acute analysis window in most studies and apparent latency in exercise-induced stimulation of mitochondrial PS.
Collapse
|
3
|
Hangül C, Karaüzüm SB, Akkol EK, Demir-Dora D, Çetin Z, Saygılı Eİ, Evcili G, Sobarzo-Sánchez E. Promising Perspective to Facioscapulohumeral Muscular Dystrophy Treatment: Nutraceuticals and Phytochemicals. Curr Neuropharmacol 2021; 19:2276-2295. [PMID: 34315378 PMCID: PMC9185762 DOI: 10.2174/1570159x19666210726151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 12/03/2022] Open
Abstract
Facioscapulohumeral Muscular Dystrophy (FSHD) is in the top three list of all dystrophies with an approximate 1:8000 incidence. It is not a life-threatening disease; however, the progression of the disease extends over being wheelchair bound. Despite some drug trials continuing, including DUX4 inhibition, TGF-ß inhibition and resokine which promote healthier muscle, there is not an applicable treatment option for FSHD today. Still, there is a need for new agents to heal, stop or at least slow down muscle wasting. Current FSHD studies involving nutraceuticals as vitamin C, vitamin E, coenzyme Q10, zinc, selenium, and phytochemicals as curcumin or genistein, daidzein flavonoids provide promising treatment strategies. In this review, we present the clinical and molecular nature of FSHD and focus on nutraceuticals and phytochemicals that may alleviate FSHD. In the light of the association of impaired pathophysiological FSHD pathways with nutraceuticals and phytochemicals according to the literature, we present both studied and novel approaches that can contribute to FSHD treatment.
Collapse
Affiliation(s)
| | | | - Esra Küpeli Akkol
- Address correspondence to this author at the Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey; E-mail:
| | | | | | | | | | | |
Collapse
|
4
|
Genetic Networks Underlying Natural Variation in Basal and Induced Activity Levels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1247-1260. [PMID: 32014853 PMCID: PMC7144082 DOI: 10.1534/g3.119.401034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual's inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster Activity levels were assayed in the Drosophila Genetics Reference Panel fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.
Collapse
|
5
|
Amiri M, Ghiasvand R, Kaviani M, Forbes SC, Salehi-Abargouei A. Chocolate milk for recovery from exercise: a systematic review and meta-analysis of controlled clinical trials. Eur J Clin Nutr 2019; 73:835-849. [PMID: 29921963 DOI: 10.1038/s41430-018-0187-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Chocolate milk (CM) contains carbohydrates, proteins, and fat, as well as water and electrolytes, which may be ideal for post-exercise recovery. We systematically reviewed the evidence regarding the efficacy of CM compared to either water or other "sport drinks" on post-exercise recovery markers. SUBJECTS/METHODS PubMed, Scopus, and Google scholar were explored up to April 2017 for controlled trials investigating the effect of CM on markers of recovery in trained athletes. RESULTS Twelve studies were included in the systematic review (2, 9, and 1 with high, fair and low quality, respectively) and 11 had extractable data on at least one performance/recovery marker [7 on ratings of perceived exertion (RPE), 6 on time to exhaustion (TTE) and heart rate (HR), 4 on serum lactate, and serum creatine kinase (CK)]. The meta-analyses revealed that CM consumption had no effect on TTE, RPE, HR, serum lactate, and CK (P > 0.05) compared to placebo or other sport drinks. Subgroup analysis revealed that TTE significantly increases after consumption of CM compared to placebo [mean difference (MD) = 0.78 min, 95% confidence interval (CI): 0.27, 1.29, P = 0.003] and carbohydrate, protein, and fat-containing beverages (MD = 6.13 min, 95% CI: 0.11, 12.15, P = 0.046). Furthermore, a significant attenuation on serum lactate was observed when CM was compared with placebo (MD = -1.2 mmol/L, 95% CI: -2.06,-0.34, P = 0.006). CONCLUSION CM provides either similar or superior results when compared to placebo or other recovery drinks. Overall, the evidence is limited and high-quality clinical trials with more well-controlled methodology and larger sample sizes are warranted.
Collapse
Affiliation(s)
- Mojgan Amiri
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Ghiasvand
- Food Security research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Kaviani
- Faculty of Pure & Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
7
|
Exercise and the control of muscle mass in human. Pflugers Arch 2018; 471:397-411. [DOI: 10.1007/s00424-018-2217-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
|
8
|
Watanabe LP, Riddle NC. Characterization of the Rotating Exercise Quantification System (REQS), a novel Drosophila exercise quantification apparatus. PLoS One 2017; 12:e0185090. [PMID: 29016615 PMCID: PMC5634558 DOI: 10.1371/journal.pone.0185090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease that has reached epidemic proportions in the United States and has prompted international legislation in an attempt to curtail its prevalence. Despite the fact that one of the most prescribed treatment options for obesity is exercise, the genetic mechanisms underlying exercise response in individuals are still largely unknown. The fruit fly Drosophila melanogaster is a promising new model for studying exercise genetics. Currently, the lack of an accurate method to quantify the amount of exercise performed by the animals is limiting the utility of the Drosophila model for exercise genetics research. To address this limitation, we developed the Rotational Exercise Quantification System (REQS), a novel apparatus that is able to simultaneously induce exercise in flies while recording their activity levels. Thus, the REQS provides a method to standardize Drosophila exercise and ensure that all animals irrespective of genotype and sex experience the same level of exercise. Here, we provide a basic characterization of the REQS, validate its measurements using video-tracking technology, illustrate its potential use by presenting a comparison of two different exercise regimes, and demonstrate that it can be used to detect genotype-dependent variation in activity levels.
Collapse
Affiliation(s)
- Louis Patrick Watanabe
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
Andersen G, Heje K, Buch AE, Vissing J. High-intensity interval training in facioscapulohumeral muscular dystrophy type 1: a randomized clinical trial. J Neurol 2017; 264:1099-1106. [PMID: 28470591 DOI: 10.1007/s00415-017-8497-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that high-intensity training (HIT) is a time-efficient exercise strategy to improve fitness. HIT has never been explored in neuromuscular diseases, likely because it may seem counterintuitive. A single session of high-intensity exercise has been studied without signs of muscle damage in facioscapulohumeral muscular dystrophy type 1 (FSHD1). We aimed to determine whether HIT is safe and effective in FSHD1 in a randomized, controlled parallel study. Untrained adults with genetically verified FSHD1 (n = 13) able to perform cycle-ergometer exercise were randomized to 8 weeks of supervised HIT (n = 6) (3 × 10-min cycle-ergometer-HIT/week) or 8 weeks of usual care (n = 7). Following this, all participants performed 8 weeks of unsupervised HIT (3 × 10-min cycle-ergometer-HIT/week). Primary outcome was fitness, maximal oxygen uptake/min/kg body weight. Furthermore, workload, 6-min walk distance, 5-time sit-to-stand time, muscle strength, and daily activity levels were measured. Pain, fatigue, and plasma-CK were monitored. Twelve patients completed the randomized part of the study. Plasma-CK levels and pain scores were unaffected by HIT. Supervised HIT improved fitness (3.3 ml O2/min/kg, CI 1.2-5.5, P < 0.01, n = 6, NNT = 1.4). Unsupervised HIT also improved fitness (2.0 ml O2/min/kg, CI 0.1-3.9, P = 0.04, n = 4). There was no training effect on other outcomes. Patients preferred HIT over strength and moderate-intensity aerobic training. It may seem counterintuitive to perform HIT in muscular dystrophies, but this RCT shows that regular HIT is safe, efficacious, and well liked by moderately affected patients with FSHD1, which suggests that HIT is a feasible method for rehabilitating patients with FSHD1.
Collapse
Affiliation(s)
- Grete Andersen
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Karen Heje
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Astrid Emile Buch
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
10
|
Dahlqvist JR, Vissing J. Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders. J Mol Neurosci 2015; 58:388-93. [PMID: 26585990 DOI: 10.1007/s12031-015-0686-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
There is no curative treatment for most neuromuscular disorders. Exercise, as a treatment for these diseases, has therefore received growing attention. When executed properly, exercise can maintain and improve health and reduce the risk of cardiovascular disease, obesity, and diabetes. In persons with muscle wasting due to neuromuscular conditions, however, a common belief has been that physical activity could accelerate degeneration of the diseased muscle and a careful approach to training has therefore been suggested. In this review, we describe the current knowledge about physical training in patients with neuromuscular diseases associated with weakness and wasting. We review studies that have investigated different types of exercise in both myopathies and motor neuron diseases, with particular emphasis on training of persons affected by spinobulbar muscular atrophy (SBMA). Finally, we provide suggestions for future investigations of training in this condition.
Collapse
Affiliation(s)
- Julia Rebecka Dahlqvist
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - John Vissing
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
11
|
Smith GI, Patterson BW, Klein SJ, Mittendorfer B. Effect of hyperinsulinaemia-hyperaminoacidaemia on leg muscle protein synthesis and breakdown: reassessment of the two-pool arterio-venous balance model. J Physiol 2015; 593:4245-57. [PMID: 26150260 DOI: 10.1113/jp270774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/19/2015] [Accepted: 06/07/2015] [Indexed: 11/08/2022] Open
Abstract
Accurate measurement of muscle protein turnover is critical for understanding the physiological processes underlying muscle atrophy and hypertrophy. Several mathematical approaches, used in conjunction with a tracer amino acid infusion, have been described to derive protein synthesis and breakdown rates from a two-pool (artery-vein) model. Despite apparently common underlying principles, these approaches differ significantly (some seem to not take into account arterio-venous shunting of amino acids, which comprises ∼80-90% of amino acids appearing in the vein) and most do not specify how tracer enrichment (i.e. mole percent excess (MPE) or tracer-to-tracee ratio (TTR)) and amino acid concentration (i.e. unlabelled only or total labelled plus unlabelled) should be expressed, which could have a significant impact on the outcome when using stable isotope labelled tracers. We developed equations that avoid these uncertainties and used them to calculate leg phenylalanine (Phe) kinetics in subjects who received a [(2) H5 ]Phe tracer infusion during postabsorptive conditions and during a hyperinsulinaemic-euglycaemic clamp with concomitant protein ingestion. These results were compared with those obtained by analysing the same data with previously reported equations. Only some of them computed the results correctly when used with MPE as the enrichment measure and total (tracer+tracee) Phe concentrations; errors up to several-fold in magnitude were noted when the same approaches were used in conjunction with TTR and/or unlabelled concentration only, or when using the other approaches (irrespective of how concentration and enrichment are expressed). Our newly developed equations should facilitate accurate calculation of protein synthesis and breakdown rates.
Collapse
Affiliation(s)
- Gordon I Smith
- Department of Medicine, Center for Human Nutrition, and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bruce W Patterson
- Department of Medicine, Center for Human Nutrition, and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Seth J Klein
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bettina Mittendorfer
- Department of Medicine, Center for Human Nutrition, and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
12
|
Andersen G, Prahm KP, Dahlqvist JR, Citirak G, Vissing J. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy: RCT study. Neurology 2015; 85:396-403. [PMID: 26156512 DOI: 10.1212/wnl.0000000000001808] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the effect of regular aerobic training and postexercise protein-carbohydrate supplementation in patients with facioscapulohumeral muscular dystrophy (FSHD). METHODS In this randomized, double-blind, placebo-controlled parallel study, we randomized untrained men (n = 21) and women (n = 20) with FSHD (age 19-65 years) to 2 training groups-training with protein supplement (n = 18) and training with placebo supplement (n = 13)-and a nonintervention control group (n = 10). We assessed fitness, walking speed, muscle strength, questionnaires, and daily activity levels before and after 12 weeks of interventions. Training involved 36 sessions of 30-minute cycle-ergometer training. After each session, patients drank either a protein-carbohydrate or placebo beverage. RESULTS In the trained participants, fitness, workload, and walking speed improved (10% [confidence interval (CI) 4%-15%], 18% [CI 10%-26%], 7% [CI 4%-11%], respectively, p < 0.001, number needed to treat = 2.1). Self-assessed physical capacity and health (Short Form-36) also improved. Muscle strength and daily activity levels did not change with training. Protein-carbohydrate supplementation did not result in further improvements in any tests compared to training alone. CONCLUSIONS This randomized, controlled study showed that regular endurance training improves fitness, walking speed, and self-assessed health in patients with FSHD without causing muscle damage. Postexercise protein-carbohydrate supplementation does not add any further improvement to training effects alone. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that regular aerobic training with or without postexercise protein-carbohydrate supplementation improves fitness and workload in patients with FSHD.
Collapse
Affiliation(s)
- Grete Andersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark.
| | - Kira P Prahm
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Julia R Dahlqvist
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Gülsenay Citirak
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Atherton PJ, Phillips BE, Wilkinson DJ. Exercise and Regulation of Protein Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:75-98. [DOI: 10.1016/bs.pmbts.2015.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|