1
|
Meade RD, Akerman AP, Notley SR, McGarr GW, McCourt ER, Kirby NV, Costello JT, Cotter JD, Crandall CG, Zanobetti A, Kenny GP. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat Commun 2025; 16:2543. [PMID: 40087302 PMCID: PMC11909281 DOI: 10.1038/s41467-025-57868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Heat waves are associated with increased fatalities from adverse cardiovascular events attributed to the negative effects of heat on cardiac function. However, scientific understanding of acute cardiac adjustments to heat has come primarily from laboratory experiments employing insulated and encapsulated heating modalities, most commonly water-perfused suits. We evaluated whether findings from those studies reflect cardiac responses during more natural exposures to hot ambient conditions simulated in climate-controlled chambers by synthesizing the findings from over 400 laboratory-based heat exposure studies (6858 participant-exposures) published between 1961-2024. Among all included studies, median (interquartile range) elevations in core temperature and heart rate from baseline to end-exposure were 0.9 (0.5-1.3)°C and 27 (15-40) beats/min. Multilevel mixed-effects meta-analyses revealed exacerbated elevations in heart rate, cardiac output, and rate pressure product (estimate of cardiac workload) and blunted falls in systolic pressure in participants heated via encapsulated modalities. Leveraging the large dataset, we also provide empirical estimates of body temperature and cardiovascular responses to a wide range of conditions experienced during heat waves. With rising global temperatures, ecologically-minded physiological research is needed to improve understanding of the effects of heat stress on cardiac responses and further the development of robust climate health models and evidence-based heat-health guidance.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph T Costello
- School of Psychology, Sport & Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Bach AJE, Cunningham SJK, Morris NR, Xu Z, Rutherford S, Binnewies S, Meade RD. Experimental research in environmentally induced hyperthermic older persons: A systematic quantitative literature review mapping the available evidence. Temperature (Austin) 2024; 11:4-26. [PMID: 38567267 PMCID: PMC7615797 DOI: 10.1080/23328940.2023.2242062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 04/04/2024] Open
Abstract
The heat-related health burden is expected to persist and worsen in the coming years due to an aging global population and climate change. Defining the breadth and depth of our understanding of age-related changes in thermoregulation can identify underlying causes and strategies to protect vulnerable individuals from heat. We conducted the first systematic quantitative literature review to provide context to the historical experimental research of healthy older adults - compared to younger adults or unhealthy age matched cases - during exogenous heat strain, focusing on factors that influence thermoregulatory function (e.g. co-morbidities). We identified 4,455 articles, with 147 meeting eligibility criteria. Most studies were conducted in the US (39%), Canada (29%), or Japan (12%), with 71% of the 3,411 participants being male. About 71% of the studies compared younger and older adults, while 34% compared two groups of older adults with and without factors influencing thermoregulation. Key factors included age combined with another factor (23%), underlying biological mechanisms (18%), age independently (15%), influencing health conditions (15%), adaptation potential (12%), environmental conditions (9%), and therapeutic/pharmacological interventions (7%). Our results suggest that controlled experimental research should focus on the age-related changes in thermoregulation in the very old, females, those with overlooked chronic heat-sensitive health conditions (e.g. pulmonary, renal, mental disorders), the impact of multimorbidity, prolonged and cumulative effects of extreme heat, evidence-based policy of control measures (e.g. personal cooling strategies), pharmaceutical interactions, and interventions stimulating protective physiological adaptation. These controlled studies will inform the directions and use of limited resources in ecologically valid fieldwork studies.
Collapse
Affiliation(s)
- Aaron J. E. Bach
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sarah J. K. Cunningham
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Norman R. Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Metro North Hospital and Health Service, The Prince Charles Hospital. Allied Health Research Collaborative, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Ferreira FC, Vaz Padilha MCS, Rocha TMDMS, Lima LS, Carandina A, Bellocchi C, Tobaldini E, Montano N, Soares PPDS, Rodrigues GD. Cardiovascular autonomic modulation during passive heating protocols: a systematic review. Physiol Meas 2023; 44:01TR01. [PMID: 36343372 DOI: 10.1088/1361-6579/aca0d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.
Collapse
Affiliation(s)
- Felipe Castro Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | | | - Teresa Mell da Mota Silva Rocha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Ligia Soares Lima
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pedro Paulo da Silva Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Dias Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Cui J, Gao Z, Leuenberger UA, Blaha C, Luck JC, Herr MD, Sinoway LI. Repeated warm water baths decrease sympathetic activity in humans. J Appl Physiol (1985) 2022; 133:234-245. [PMID: 35736952 DOI: 10.1152/japplphysiol.00684.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute whole-body heat stress evokes sympathetic activation. However, the chronic effects of repeated moderate heat exposure (RMHE) on muscle sympathetic nerve activity (MSNA) in healthy individuals remains unclear. We performed RMHE with 4 weeks (5 days/week) warm baths (~40 °C, for 30 min) in 9 healthy older (59 ± 2 yrs) volunteers. Hemodynamic variables and MSNA were examined prior, 1 day after and 1 week following 4 weeks of RMHE in a laboratory at ~23 °C. Cold pressor test and handgrip exercise were performed during the tests. Under normothermic condition, the resting MSNA burst rate (prior, post, post 1-wk: 31.6 ± 2.0, 25.2 ± 2.0, 27.7 ± 1.7 bursts/min; P < 0.001) and burst incidence (P < 0.001) significantly decreased after RMHE. Moreover, the resting heart rate significantly decreased after RMHE (62.3 ± 1.6, 59.5 ± 2.0, 58.2 ± 1.6 beats/min, P = 0.031). The low frequency to high frequency ratio of heart rate variability, an index of sympathovagal balance, also decreased after RMHE. The sensitivity of baroreflex control of MSNA and heart rate were not altered by RMHE, although the operating points were reset. The MSNA and hemodynamic responses (i.e. changes) to handgrip exercise or cold pressor test were not significantly altered. These data suggest that the RMHE evoked by warm baths decreases resting sympathetic activity and HR, which can be considered beneficial effects. The mechanism(s) should be examined in future studies.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Jonathan Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
5
|
Hamaoka T, Leuenberger UA, Blaha C, Luck JC, Sinoway LI, Cui J. Baroreflex responses to limb venous distension in humans. Am J Physiol Regul Integr Comp Physiol 2022; 323:R267-R276. [PMID: 35726869 PMCID: PMC9359652 DOI: 10.1152/ajpregu.00028.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The venous distension reflex (VDR) is a pressor response evoked by peripheral venous distension and accompanied by increased muscle sympathetic nerve activity (MSNA). The effects of venous distension on the baroreflex, an important modulator of blood pressure (BP), has not been examined. The purpose of this study was to examine the effect of the VDR on baroreflex sensitivity (BRS). We hypothesized that the VDR will increase the sympathetic BRS (SBRS). Beat-by-beat heart rate (HR), BP and MSNA were recorded in 16 female and 19 male young healthy subjects. To induce venous distension, normal saline equivalent to 5% of the forearm volume was infused into the veins of the occluded forearm. SBRS was assessed from the relationship between diastolic BP and MSNA during spontaneous BP variations. Cardiovagal BRS (CBRS) was assessed with the sequence technique. Venous distension evoked significant increases in BP and MSNA. Compared to baseline, during the maximal VDR response period, SBRS was significantly increased (-3.1 ± 1.5 to -4.5 ± 1.6 bursts・100 heartbeat-1・mmHg-1, P < 0.01) and CBRS was significantly decreased (16.6 ± 5.4 to 13.8 ± 6.1 ms・mmHg-1, P < 0.01). No sex differences were observed in the effect of the VDR on SBRS or CBRS. These results indicate that in addition to its pressor effect, the VDR altered both SBRS and CBRS. We speculate that these changes in baroreflex function contribute to the modulation of MSNA and BP during limb venous distension.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
6
|
Hamaoka T, Murai H, Hirai T, Sugimoto H, Mukai Y, Inoue O, Takashima S, Kato T, Takata S, Usui S, Sakata K, Kawashiri MA, Takamura M. Different Responses of Muscle Sympathetic Nerve Activity to Dapagliflozin Between Patients With Type 2 Diabetes With and Without Heart Failure. J Am Heart Assoc 2021; 10:e022637. [PMID: 34719241 PMCID: PMC8751957 DOI: 10.1161/jaha.121.022637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Sodium-glucose cotransporter 2 inhibitors improve cardiovascular outcomes in patients with diabetes with and without heart failure (HF). However, their influence on sympathetic nerve activity (SNA) remains unclear. The purpose of this study was to evaluate the effect of sodium-glucose cotransporter 2 inhibitors on SNA and compare the responses of SNA to sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes with and without HF. Methods and Results Eighteen patients with type 2 diabetes, 10 with HF (65.4±3.68 years) and 8 without HF (63.3±3.62 years), were included. Muscle SNA (MSNA), heart rate, and blood pressure were recorded before and 12 weeks after administration of dapagliflozin (5 mg/day). Sympathetic and cardiovagal baroreflex sensitivity were simultaneously calculated. Brain natriuretic peptide level increased significantly at baseline in patients with HF than those without HF, while MSNA, blood pressure, and hemoglobin A1c did not differ between the 2 groups. Fasting blood glucose and homeostatic model assessment of insulin resistance did not change in either group after administering dapagliflozin. MSNA decreased significantly in both groups. However, the reduction in MSNA was significantly higher in patients with HF than patients with non-HF (-20.2±3.46 versus -9.38±3.65 bursts/100 heartbeats; P=0.049), which was concordant with the decrease in brain natriuretic peptide. Conclusions Dapagliflozin significantly decreased MSNA in patients with type 2 diabetes regardless of its blood glucose-lowering effect. Moreover, the reduction in MSNA was more prominent in patients with HF than in patients with non-HF. These results indicate that the cardioprotective effects of sodium-glucose cotransporter 2 inhibitors may, in part, be attributed to improved SNA.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan.,Kanazawa Municipal Hospital Kanazawa Japan
| | - Tadayuki Hirai
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Hiroyuki Sugimoto
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Yusuke Mukai
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | | | - Soichiro Usui
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| |
Collapse
|
7
|
Ferreira FC, Vaz Padilha MCS, Tobadini E, Carandina A, Montano N, Soares PPDS, Rodrigues GD. The interplay between heated environment and active standing test on cardiovascular autonomic control in healthy individuals. Physiol Meas 2021; 42. [PMID: 34261052 DOI: 10.1088/1361-6579/ac1497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Objective.To investigate the interplay between active standing and heat stress on cardiovascular autonomic modulation in healthy individuals.Approach.Blood pressure (BP) and ECG were continuously recorded during 30 min in supine (SUP) and 6 min in orthostatic position (ORT) under thermal reference (TC; ∼24 °C) or heated environment (HOT; ∼36 °C) conditions, in a randomized order. All data collection was performed during the winter and spring seasons when typical outdoor temperatures are ∼23 °C. Spectral analysis was employed by the autoregressive model of R-R and systolic blood pressure (SBP) time series and defined, within each band, in low (LF, 0.04 to 0.15 Hz) and high (0.15-0.40 Hz) frequencies. The indices of cardiac sympathetic (LF) and cardiac parasympathetic (HF) were normalized (nu) dividing each band power by the total power subtracted the very-low component (<0.04 Hz), obtaining the cardiac autonomic balance (LF/HF) modulation. The gain of the relationship between SBP and R-R variabilities within the LF band was utilized for analysis of spontaneous baroreflex sensitivity (alpha index;αLF). Nonlinear analysis was employed through symbolic dynamics of R-R, which provided the percentage of sequences of three heart periods without changes in R-R interval (0V%; cardiac sympathetic modulation) and two significant variations (2UV% and 2LV%; cardiac vagal modulation).Main results.HOT increased 0V% and HR, and decreasedαLF and 2UV% during SUP compared to TC. During ORT, HOT provokes a greater increment on HR, LF/HF and 0V%, indexes compared to ORT under TC.Significance.At rest, heat stress influences both autonomic branches, increasing sympathetic and decreasing vagal modulation and spontaneous baroreflex sensitivity. The augmented HR during active standing under heat stress seems to be mediated by a greater increment in cardiac sympathetic modulation, showing an interplay between gravitational and thermal stimulus.
Collapse
Affiliation(s)
- Felipe Castro Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | | | - Eleonora Tobadini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I-20122 Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, I-20122 Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I-20122 Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I-20122 Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, I-20122 Milan, Italy
| | - Pedro Paulo da Silva Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Dias Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil.,Department of Clinical Sciences and Community Health, University of Milan, I-20122 Milan, Italy
| |
Collapse
|
8
|
Hamaoka T, Blaha C, Luck JC, Leuenberger UA, Sinoway LI, Cui J. Acute effects of sublingual nitroglycerin on cardiovagal and sympathetic baroreflex sensitivity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R525-R536. [PMID: 34378422 DOI: 10.1152/ajpregu.00304.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of nitroglycerin (glyceryl trinitrate, GTN) on baroreflex sensitivity (BRS) are incompletely understood. Moreover, there are no reports evaluating the acute responses in both the sympathetic BRS (SBRS) and the cardiovagal BRS (CBRS) to the administration of sublingual GTN. We hypothesized that sublingual GTN modulates both CBRS and SBRS. In 10 healthy subjects, beat-to-beat heart rate (HR), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) were recorded before and for 10 min after sublingual administration of GTN 0.4 mg. SBRS was evaluated from the relationship between spontaneous variations in diastolic BP and MSNA. CBRS was assessed with the sequence technique. These variables were assessed during baseline, during min 3rd - 6th (Post A) and 7th -10th min (Post B) after GTN administration. Two min after GTN administration, MSNA increased significantly and remained significantly elevated during recording. Compared to baseline, CBRS decreased significantly (Post A: 12.9 ± 1.6 to 7.1 ± 1.0 ms/mmHg, P < 0.05), while SBRS increased significantly (Post A: 0.8 ± 0.2 to 1.5 ± 0.2 units・beat-1・mmHg-1, P < 0.05) with an upward shift of the operating point. There were no differences in these variables between Post A and B. A clinical dose of GTN increased MSNA rapidly through effects on both CBRS and SBRS. These effects should be kept in mind when nitrates are used to clinically treat chest pain and acute coronary syndromes and used as vasodilators in experimental settings.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Cui J, Blaha C, Leuenberger UA, Sinoway LI. Sympathetic activation due to limb venous distension is preserved during muscle metaboreceptor stimulation. Am J Physiol Regul Integr Comp Physiol 2021; 321:R21-R28. [PMID: 33978490 DOI: 10.1152/ajpregu.00305.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Venous saline infusions in an arterially occluded forearm evoke reflex increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in humans (venous distension reflex). It is unclear if the inputs from metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) would modify the venous distension reflex. We hypothesized that muscle metaboreceptor stimulation might augment the venous distension reflex. BP (Finapres), heart rate (ECG), and MSNA (microneurography) were assessed in 18 young healthy subjects. In trial A, saline (5% forearm volume) was infused into the veins of an arterially occluded arm (nonhandgrip trial). In trial B, subjects performed 2-min static handgrip followed by postexercise circulatory occlusion (PECO) of the arm. During PECO, saline was infused into the veins of the arm (handgrip trial). In trial A, the infusion increased MSNA and BP as expected (both P < 0.001). In trial B, handgrip significantly raised MSNA, BP, and venous lactic acid concentrations. Venous saline infusion during PECO further raised MSNA and BP (both P < 0.001). The changes in MSNA (Δ8.6 ± 1.5 to Δ10.6 ± 1.8 bursts/min, P = 0.258) and mean arterial pressure (P = 0.844) evoked by the infusion during PECO were not significantly different from those in the nonhandgrip trial. These observations indicate that venous distension reflex responses are preserved during sympathetic activation mediated by the muscle metaboreflex.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cheryl Blaha
- Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Cui J, Gao Z, Blaha C, Luck JC, Brandt K, Sinoway LI. Moderate whole body heating attenuates the exercise pressor reflex responses in older humans. Am J Physiol Regul Integr Comp Physiol 2021; 320:R757-R769. [PMID: 33789459 DOI: 10.1152/ajpregu.00232.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prior reports show that whole body heat stress attenuates the pressor response to exercise in young healthy subjects. The effects of moderate whole body heating (WBH; e.g., increase in internal temperature Tcore of ∼0.4°C-0.5°C) or limb heating on sympathetic and cardiovascular responses to exercise in older healthy humans remain unclear. We examined the muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), and heart rate (HR) in 14 older (62 ± 2 yr) healthy subjects during fatiguing isometric handgrip exercise and postexercise circulatory occlusion (PECO). The protocol was performed under normothermic, moderate WBH, and local limb (i.e., forearm) heating conditions during three visits. During the mild WBH stage (increase in Tcore of <0.3°C), HR increased, whereas BP and MSNA decreased from baseline. Under the moderate WBH condition (increase in Tcore of ∼0.4°C), BP decreased, HR increased, and MSNA was unchanged from baseline. Compared with the normothermic trial, the absolute MAP during fatiguing exercise and PECO was lower during the WBH trial. Moreover, MSNA and MAP responses (i.e., changes) to fatiguing exercise were also less than those seen during the normothermic trial. Limb heating induced a similar increase in forearm muscle temperature to that seen in the WBH trial (∼0.7°C-1.5°C). Limb heating did not alter resting MAP, HR, or MSNA. The MSNA and hemodynamic responses to exercise in the limb heating trial were not different from those in the normothermic trial. These data suggest that moderate WBH attenuates MSNA and BP responses to exercise in older healthy humans.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Cheryl Blaha
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Jonathan Carter Luck
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Kristen Brandt
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
11
|
Cui J, Blaha C, Herr MD, Sinoway LI. Lower-limb venous distension reflex and orthostatic tolerance in young healthy humans. Am J Physiol Regul Integr Comp Physiol 2020; 319:R142-R147. [PMID: 32663039 DOI: 10.1152/ajpregu.00269.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier reports suggest that limb venous distension evokes reflex increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) (i.e., venous distension reflex). Our recent report also shows that suction of arterially occluded limb evokes venous distension reflex. We postulate that the venous distension reflex contributes to autonomic responses to orthostatic stress. In this study, we hypothesized that orthostatic tolerance would be linked to the MSNA response seen with lower limb suction. Fifteen healthy subjects were tested in the supine position. Negative pressure (-100 mmHg) was applied on an arterially occluded lower limb for 2 min. MSNA from the peroneal nerve in the limb not exposed to suction, ECG, and BP (Finometer) was recorded throughout the study. Limb occlusion without suction was used as a control trial. In a separate visit, the individual's orthostatic tolerance was assessed using a graded lower body negative pressure (LBNP) tolerance test. Mean arterial BP and MSNA (18.6 ± 1.9 to 23.6 ± 2.0 bursts/min) significantly (both P < 0.05) increased during limb suction. Orthostatic tolerance index positively correlated (R = 0.636, P = 0.011) with the MSNA response seen with suction during occlusion. Since the venous distension reflex strength correlates with the level of orthostatic tolerance, we speculate that lower-limb venous distension reflex engagement increases the sympathetic responses during orthostatic challenge and serves to maintain BP with postural stress.
Collapse
Affiliation(s)
- Jian Cui
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl Blaha
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael D Herr
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
12
|
Cui J, Drew RC, Muller MD, Blaha C, Gonzalez V, Sinoway LI. Habitual cigarette smoking raises pressor responses to spontaneous bursts of muscle sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol 2019; 317:R280-R288. [PMID: 31091152 DOI: 10.1152/ajpregu.00293.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Smoking is a risk factor for cardiovascular diseases. Prior reports showed a transient increase in blood pressure (BP) following a spontaneous burst of muscle sympathetic nerve activity (MSNA). We hypothesized that this pressor response would be accentuated in smokers. Using signal-averaging techniques, we examined the BP (Finometer) response to MSNA in 18 otherwise healthy smokers and 42 healthy nonsmokers during resting conditions. The sensitivities of baroreflex control of MSNA and heart rate were also assessed. The mean resting MSNA, heart rate, and mean arterial pressure (MAP) were higher in smokers than nonsmokers. The MAP increase following a burst of MSNA was significantly greater in smokers than nonsmokers (Δ3.4 ± 0.3 vs. Δ1.6 ± 0.1 mmHg, P < 0.001). The baroreflex sensitivity (BRS) of burst incidence, burst area, or total activity was not different between the two groups. However, cardiac BRS was lower in smokers than nonsmokers (14.6 ± 1.7 vs. 24.6 ± 1.5 ms/mmHg, P < 0.001). Moreover, the MAP increase following a burst was negatively correlated with the cardiac BRS. These observations suggest that habitual smoking in otherwise healthy individuals raises the MAP increase following spontaneous MSNA and that the attenuated cardiac BRS in the smokers was a contributing factor. We speculate that the accentuated pressor increase in response to spontaneous MSNA may contribute to the elevated resting BP in the smokers.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Rachel C Drew
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Virginia Gonzalez
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State Hershey, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
13
|
Gagnon D, Romero SA, Ngo H, Sarma S, Cornwell WK, Poh PYS, Stoller D, Levine BD, Crandall CG. Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults. J Physiol 2017; 595:6489-6498. [PMID: 28833129 DOI: 10.1113/jp274742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Age-related changes in cutaneous microvascular and cardiac functions limit the extent of cutaneous vasodilatation and the increase in cardiac output that healthy older adults can achieve during passive heat stress. However, it is unclear if these age-related changes in microvascular and cardiac functions maximally restrain the levels of cutaneous vasodilatation and cardiac output that healthy older adults can achieve during heat stress. We observed that rapid volume loading, performed during passive heat stress, augments both cutaneous vasodilatation and cardiac output in healthy older humans. These findings demonstrate that the microcirculation of healthy aged skin can further dilate during passive heat exposure, despite peripheral limitations to vasodilatation. Furthermore, healthy older humans can augment cardiac output when cardiac pre-load is increased during heat stress. ABSTRACT Primary ageing markedly attenuates cutaneous vasodilatation and the increase in cardiac output during passive heating. However, it remains unclear if these responses are maximally restrained by age-related changes in cutaneous microvascular and cardiac functions. We hypothesized that rapid volume loading performed during heat stress would increase cardiac output in older adults without parallel increases in cutaneous vasodilatation. Twelve young (Y: 26 ± 5 years) and ten older (O: 69 ± 3 years) healthy adults were passively heated until core temperature increased by 1.5°C. Cardiac output (thermodilution), forearm vascular conductance (FVC, venous occlusion plethysmography) and cutaneous vascular conductance (CVC, laser-Doppler) were measured before and after rapid infusion of warmed saline (15 mL kg-1 , ∼7 min). While heat stressed, but prior to saline infusion, cardiac output (O: 6.8 ± 0.4 vs. Y: 9.4 ± 0.6 L min-1 ), FVC (O: 0.08 ± 0.01 vs. Y: 0.17 ± 0.02 mL (100 mL min-1 mmHg-1 )-1 ), and CVC (O: 1.29 ± 0.34 vs. Y: 1.93 ± 0.30 units mmHg-1 ) were lower in older adults (all P < 0.01). Rapid saline infusion increased cardiac output (O: +1.9 ± 0.3, Y: +1.8 ± 0.7 L min-1 ), FVC (O: +0.015 ± 0.007, Y: +0.048 ± 0.013 mL (100 mL min-1 mmHg-1 )-1 ), and CVC (O: +0.28 ± 0.10, Y: +0.29 ± 0.16 units mmHg-1 ) in both groups (all P < 0.01). The absolute increase in cardiac output and CVC were similar between groups, whereas FVC increased to a greater extent in young adults (P < 0.01). These results demonstrate that healthy older adults can achieve greater levels of cutaneous vasodilatation and cardiac output during passive heating.
Collapse
Affiliation(s)
- Daniel Gagnon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute Research Centre, Montréal, QC, Canada.,Département de pharmacologie et physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Steven A Romero
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hai Ngo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William K Cornwell
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Y S Poh
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Stoller
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|