1
|
The Effect of Zinc Oxide Nanoparticles on Properties and Burn Wound Healing Activity of Thixotropic Xymedone Gels. Sci Pharm 2022. [DOI: 10.3390/scipharm90040061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) modified by oxopyrymidine alcohol, also known as xymedone (Xym), were obtained and studied using FTIR, UV-vis, and fluorescent spectroscopy, and SEM, BET, powder XRD, and DLS analysis. A formulation of thixotropic hydrophilic gels containing Carbopol-based Xym and ZnO NPs was developed. A vertical Franz cell with a cellulose acetate membrane was used as a model to investigate the passive diffusion of the gel components by AAS. The gel components—Xym and ZnO NPs—were shown to penetrate through acetyl cellulose membrane within 5–7 h depending on an initial amount, and its values were in the range of 56–77%. The penetration of modified ZnO NPs by Xym was more effective in contrast to ZnO NPs without modification. The burn wound healing activity of ZnO NPs–Xym gel was demonstrated on a thermal burn wound model on rats. SOD and GR activity was increased by 30–35% during ZnO NPs–Xym gel treatment, the burn area on 10 postburn day decreased by 10% in contrast to a positive control, Methyluracyl®® ointment.
Collapse
|
2
|
Melnikova N, Malygina D, Balakireva A, Peretyagin P, Revin V, Devyataeva A, Malafeeva K, Revin V. The Effect of Betulin Diphosphate in Wound Dressings of Bacterial Cellulose-ZnO NPs on Platelet Aggregation and the Activity of Oxidoreductases Regulated by NAD(P)+/NAD(P)H-Balance in Burns on Rats. Molecules 2021; 26:5478. [PMID: 34576949 PMCID: PMC8469126 DOI: 10.3390/molecules26185478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers' blood found the inhibition of ADP-induced platelet aggregation by 30-90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11-38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70-170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky University, 23/5 Gagarin Av., 603950 Nizhny Novgorod, Russia
| | - Darina Malygina
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia;
| | - Alyona Balakireva
- Central Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia; (A.B.); (P.P.)
| | - Peter Peretyagin
- Central Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia; (A.B.); (P.P.)
| | - Vadim Revin
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia; (V.R.); (A.D.); (K.M.); (V.R.)
| | - Anna Devyataeva
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia; (V.R.); (A.D.); (K.M.); (V.R.)
| | - Kseniya Malafeeva
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia; (V.R.); (A.D.); (K.M.); (V.R.)
| | - Viktor Revin
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia; (V.R.); (A.D.); (K.M.); (V.R.)
| |
Collapse
|
3
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
4
|
Melnikova N, Knyazev A, Nikolskiy V, Peretyagin P, Belyaeva K, Nazarova N, Liyaskina E, Malygina D, Revin V. Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:713. [PMID: 33809076 PMCID: PMC8000300 DOI: 10.3390/nano11030713] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/19/2023]
Abstract
A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5-25%) corresponded to 5-6 nm and 10-18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings "BC-ZnO NPs-BDP" was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky University, 23/5 Gagarin Av., 603950 Nizhny Novgorod, Russia;
| | - Alexander Knyazev
- Faculty of Chemistry, Lobachevsky University, 23/5 Gagarin Av., 603950 Nizhny Novgorod, Russia;
| | - Viktor Nikolskiy
- Nizhni Novgorod Regional Clinical Hospital named after N.A. Semashko, 190 Rodionova str., 603126 Nizhny Novgorod, Russia;
| | - Peter Peretyagin
- Department of Experimental Medicine, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (P.P.); (K.B.)
| | - Kseniia Belyaeva
- Department of Experimental Medicine, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (P.P.); (K.B.)
| | - Natalia Nazarova
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya str., 430005 Saransk, Russia; (N.N.); (E.L.); (V.R.)
| | - Elena Liyaskina
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya str., 430005 Saransk, Russia; (N.N.); (E.L.); (V.R.)
| | - Darina Malygina
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia;
| | - Viktor Revin
- Department of Biotechnology, Bioengineering and Biochemistry, National Research Ogarev Mordovia State University, 68 Bolshevistskaya str., 430005 Saransk, Russia; (N.N.); (E.L.); (V.R.)
| |
Collapse
|
5
|
Fujii N, Kenny GP, McGarr GW, Amano T, Honda Y, Kondo N, Nishiyasu T. TRPV4 channel blockade does not modulate skin vasodilation and sweating during hyperthermia or cutaneous postocclusive reactive and thermal hyperemia. Am J Physiol Regul Integr Comp Physiol 2020; 320:R563-R573. [PMID: 33085914 DOI: 10.1152/ajpregu.00123.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels exist on vascular endothelial cells and eccrine sweat gland secretory cells in human skin. Here, we assessed whether TRPV4 channels contribute to cutaneous vasodilation and sweating during whole body passive heat stress (protocol 1) and to cutaneous vasodilation during postocclusive reactive hyperemia and local thermal hyperemia (protocol 2). Intradermal microdialysis was employed to locally deliver pharmacological agents to forearm skin sites, where cutaneous vascular conductance (CVC) and sweat rate were assessed. In protocol 1 (12 young adults), CVC and sweat rate were increased by passive whole body heating, resulting in a body core temperature elevation of 1.2 ± 0.1°C. The elevated CVC and sweat rate assessed at sites treated with TRPV4 channel antagonist (either 200 µM HC-067047 or 125 µM GSK2193874) were not different from the vehicle control site (5% dimethyl sulfoxide). After whole body heating, the TRPV4 channel agonist (100 µM GSK1016790A) was administered to each skin site, eliciting elevations in CVC. Relative to control, this response was partly attenuated by both TRPV4 channel antagonists, confirming drug efficacy. In protocol 2 (10 young adults), CVC was increased following a 5-min arterial occlusion and during local heating from 33 to 42°C. These responses did not differ between the control and the TRPV4 channel antagonist sites (200 µM HC-067047). We show that TRPV4 channels are not required for regulating cutaneous vasodilation or sweating during a whole body passive heat stress. Furthermore, they are not required for regulating cutaneous vasodilation during postocclusive reactive hyperemia and local thermal hyperemia.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Melnikova N, Vorobyova O, Balakireva A, Malygina D, Solovyeva A, Belyaeva K, Orekhov D, Knyazev A. The New Pharmaceutical Compositions of Zinc Oxide Nanoparticles and Triterpenoids for the Burn Treatment. Pharmaceuticals (Basel) 2020; 13:E207. [PMID: 32842689 PMCID: PMC7558657 DOI: 10.3390/ph13090207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
We studied oleogels containing zinc oxide nanoparticles (ZnO NPs) and lupane triterpenoids in sunflower oil for the treatment of burns. The modification of ZnO was carried out by treatment with alcohol solutions of betulin, betulonic acid, betulin diacetate and betulin diphosphate. The properties of modified ZnO NPs were studied by powder XRD (average sizes of 10-20 nm), FTIR (νZnO 450 cm-1), UV-vis (345-360 nm), and blue-violet emission (380-420 nm). The identification and assay of modified ZnO NPs and triterpenoids were estimated. The treatment by oleogels of deep II-degree burns was studied on rats using histological studies, Doppler flowmetry and evaluation of enzymes activity and malonic dialdehyde (MDA) level. After the action of oleogels, burn wound area, and the necrosis decreased twice on the 10th day in comparison with the 1st day after burn. The microcirculation index in the near-wound zone by 20-30% improved compared with the group without treatment. Evaluation of the enzyme activity and the MDA level after treatment by oleogels during the course of 10 days showed them returning to normal. The improvement of antioxidant biochemical indexes, as well as wounds' healing, was mainly determined by the influence of zinc oxide nanoparticles.
Collapse
Affiliation(s)
- Nina Melnikova
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Olga Vorobyova
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Alyona Balakireva
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Darina Malygina
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Anna Solovyeva
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Kseniya Belyaeva
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin sq., 603950 Nizhny Novgorod, Russia; (O.V.); (A.B.); (D.M.); (A.S.); (K.B.)
| | - Dmitry Orekhov
- Department of Engineering Physics and Chemistry, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin st., 603950 Nizhny Novgorod, Russia;
| | - Alexander Knyazev
- Faculty of Chemistry, Lobachevsky University, 23/5 Gagarin Av., 603950 Nizhny Novgorod, Russia;
| |
Collapse
|
7
|
Ullrich H, Gori T. The pleiotropic effects of antiplatelet therapies. Clin Hemorheol Microcirc 2019; 73:29-34. [DOI: 10.3233/ch-199214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Helen Ullrich
- Zentrum für Kardiologie, Kardiologie I, Universitätsmedizin Mainz, Johannes Gutenberg- University Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Standort Rhein-Main, Partnereinrichtung Mainz, Germany
| | - Tommaso Gori
- Zentrum für Kardiologie, Kardiologie I, Universitätsmedizin Mainz, Johannes Gutenberg- University Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Standort Rhein-Main, Partnereinrichtung Mainz, Germany
| |
Collapse
|
8
|
Miller AJ, Luck JC, Kim DJK, Leuenberger UA, Aziz F, Radtka JF, Sinoway LI, Muller MD. Peripheral revascularization attenuates the exercise pressor reflex and increases coronary exercise hyperemia in peripheral arterial disease. J Appl Physiol (1985) 2018; 125:58-63. [PMID: 29648515 DOI: 10.1152/japplphysiol.01046.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral arterial disease (PAD) is associated with augmented blood pressure (BP) and impaired coronary blood flow responses to exercise, which may increase cardiovascular risk. We investigated the effects of leg revascularization on the BP and coronary blood flow responses to exercise in PAD. Seventeen PAD patients (11 men, 66 ± 2 yr) performed single-leg plantar flexion exercise 24 h before and 1 mo following leg revascularization. BP and heart rate (HR) were measured continuously, and rate pressure product (systolic BP × HR) was calculated as an index of myocardial oxygen demand. Coronary blood velocity was obtained by transthoracic Doppler echocardiography in 8/17 subjects. The mean BP response to plantar flexion exercise was attenuated by leg revascularization (pre-revascularization: 15 ± 4 vs. post-revascularization: 7 ± 3 mmHg, P = 0.025). The HR response to plantar flexion was also attenuated following leg revascularization (pre-revascularization: 9 ± 1 vs. post-revascularization: 6 ± 1 beats/min, P = 0.006). The change in coronary blood velocity with exercise was greater at the post-revascularization visit: 4 ± 1 vs. pre-revascularization: -1 ± 2 cm/s ( P = 0.038), even though the change in rate pressure product was not greater following revascularization in these subjects (pre-revascularization: 2,796 ± 871 vs. post-revascularization: 1,766 ± 378 mmHg·beats/min, P = 0.082). These data suggest that leg revascularization alters reflex control of BP, HR, and coronary blood flow in response to exercise in patients with PAD. NEW & NOTEWORTHY We found that peripheral revascularization procedures lowered exercise blood pressure and improved coronary blood flow in patients with peripheral arterial disease.
Collapse
Affiliation(s)
- Amanda J Miller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - John F Radtka
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
9
|
Maley MJ, House JR, Tipton MJ, Eglin CM. Role of cyclooxygenase in the vascular response to locally delivered acetylcholine in Caucasian and African descent individuals. Microvasc Res 2017; 111:80-87. [DOI: 10.1016/j.mvr.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 01/14/2023]
|
10
|
|
11
|
LANE-CORDOVA ABBID, RANADIVE SUSHANTM, YAN HUIMIN, KAPPUS REBECCAM, SUN PENG, BUNSAWAT KANOKWAN, SMITH DENISEL, HORN GAVINP, PLOUTZ-SNYDER ROBERT, FERNHALL BO. Effect of Aspirin Supplementation on Hemodynamics in Older Firefighters. Med Sci Sports Exerc 2015; 47:2653-9. [DOI: 10.1249/mss.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Korobko VM, Melnikova NB, Panteleev DA, Martusevich AK, Peretyagin SP. The study of the complexes of nitromedicine with cytochrome c and NO-containing aqueous dosage form in the wound treatment of rats. Nitric Oxide 2014; 42:62-9. [PMID: 25135208 DOI: 10.1016/j.niox.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
Abstract
The interaction of cytochrome c with nitromedicines, such as 5-nitrofural, 5-nitroxoline, metronidazole and sodium nitrite which enables the generation of nitric oxide or nitrosyl complexes in the presence of ascorbic acid or sodium ascorbate in acid medium has been investigated. The pharmaceutical compositions containing cytochrome c and nitromedicine complexes as active substances were studied in the experiments by using rats. It has been shown that positive local and systemic effects were estimated when NO-containing gel was used at burn treatment. These positive effects at the local level are due to a sufficient microcirculation index which indicates intensification of the blood flow in the microvessels in the injured area. These effects at the systemic level provide maintenance of the general heart rhythm and gradual recovery of the vegetative balance which is not observed in the animals of the control group.
Collapse
Affiliation(s)
- V M Korobko
- Department of Pharmaceutical Chemistry, Nizhny Novgorod State Medical Academy, Minin sq., 10/1, Nizhny Novgorod, 603600, Russia Federation
| | - N B Melnikova
- Department of Pharmaceutical Chemistry, Nizhny Novgorod State Medical Academy, Minin sq., 10/1, Nizhny Novgorod, 603600, Russia Federation.
| | - D A Panteleev
- Department of Pharmaceutical Chemistry, Nizhny Novgorod State Medical Academy, Minin sq., 10/1, Nizhny Novgorod, 603600, Russia Federation
| | - A K Martusevich
- Nizhny Novgorod Research Institute of Traumatology and Orthopedics of Public Health Ministry of Russian Federation, Upper Volga emb., 18, Nizhny Novgorod, 603155, Russia Federation
| | - S P Peretyagin
- Nizhny Novgorod Research Institute of Traumatology and Orthopedics of Public Health Ministry of Russian Federation, Upper Volga emb., 18, Nizhny Novgorod, 603155, Russia Federation
| |
Collapse
|
13
|
Choi PJ, Brunt VE, Fujii N, Minson CT. New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. J Appl Physiol (1985) 2014; 117:277-83. [PMID: 24903917 DOI: 10.1152/japplphysiol.01397.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous hyperemia in response to rapid skin local heating to 42°C has been used extensively to assess microvascular function. However, the response is dependent on both nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs), and increases cutaneous vascular conductance (CVC) to ∼90-95% maximum in healthy subjects, preventing the study of potential means to improve cutaneous function. We sought to identify an improved protocol for isolating NO-dependent dilation. We compared nine heating protocols (combinations of three target temperatures: 36°C, 39°C, and 42°C, and three rates of heating: 0.1°C/s, 0.1°C/10 s, 0.1°C/min) in order to select two protocols to study in more depth (protocol 1; N = 6). Then, CVC was measured at four microdialysis sites receiving: 1) lactated Ringer solution (Control), 2) 50-mM tetraethylammonium (TEA) to inhibit EDHFs, 3) 20-mM nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase, and 4) TEA+L-NAME, in response to local heating either to 39°C at 0.1°C/s (protocol 2; N = 10) or 42°C at 0.1°C/min (protocol 3; N = 8). Rapid heating to 39°C increased CVC to 43.1 ± 5.2%CVCmax (Control), which was attenuated by L-NAME (11.4 ± 2.8%CVCmax; P < 0.001) such that 82.8 ± 4.2% of the plateau was attributable to NO. During gradual heating, 81.5 ± 3.3% of vasodilation was attributable to NO at 40°C, but at 42°C only 32.7 ± 7.8% of vasodilation was attributable to NO. TEA+L-NAME attenuated CVC beyond L-NAME at temperatures >40°C (43.4 ± 4.5%CVCmax at 42°C, P < 0.001 vs. L-NAME), suggesting a role of EDHFs at higher temperatures. Our findings suggest local heating to 39°C offers an improved approach for isolating NO-dependent dilation and/or assessing perturbations that may improve microvascular function.
Collapse
Affiliation(s)
- Patricia J Choi
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Naoto Fujii
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
14
|
Abstract
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Collapse
|