1
|
Doğanyiğit Z, Akyüz E, Yılmaz S, Taheri S, Okan A, Başaran KE, Uçar S, Güvenilir E, Yılmaz Şükranlı Z, Bor TB. Respiratory surveillance and inward rectifier potassium channel expression in lung tissue within an experimental epilepsy model. Eur J Pharmacol 2025; 991:177288. [PMID: 39864576 DOI: 10.1016/j.ejphar.2025.177288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Epilepsy is characterized by neuronal discharges that occur as a result of disruption of the excitatory and inhibitory balance of the brain due to functional and structural changes. It has been shown in the literature that this neurological disorder may be related to the expression of ion channels. Any defect in the function or expression mechanism of these channels can lead to various neuronal disorders such as epilepsy. Epileptic seizures occur as a result of the accumulation of biological disorders in the circulatory, respiratory and nervous systems. In this study, we aimed to examine the changes in the expression of inward-directing potassium channels (Kir 3.1 and 6.2) in lung tissue and respiratory functions, considering that it will contribute to the elucidation of the mechanisms of sudden deaths thought to be caused by cardiorespiratory complications in epilepsy. In the study, 48 adult male Wistar albino rats weighing 250-300 g were used in the study. During the research process, respiratory function tests were performed on epileptic rats induced with pentylenetetrazol (PTZ) firing model, and then histopathological changes in lung and hippocampus tissues, and expression levels of the Kir (3.1 and 6.2) channels were evaluated by immunohistochemistry, qRT-PCR and Western blot analysis. Memantine and tertiapin-Q have been shown to protect epileptic groups from histopathological harm induced by PTZ application and also reduce HIF-1α, Kir 3.1 and Kir 6.2 expression. The findings imply that memantine and tertiapin-Q would be suitable options for treating epilepsy patients.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey.
| | - Enes Akyüz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, 34468, Turkey
| | - Seher Yılmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Ecma Güvenilir
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Zeynep Yılmaz Şükranlı
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Taha Berkay Bor
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| |
Collapse
|
2
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
3
|
Kuloglu N, Basaran KE, Yakan B. Investigation of vascular endothelial growth factor receptor-dependent neuroplasticity on rat nucleus tractus solitarius and phrenic nerve after chronic sustained hypoxia. J Biochem Mol Toxicol 2021; 35:e22918. [PMID: 34541741 DOI: 10.1002/jbt.22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
The neuronal system that controls respiration creates plasticity in response to physiological changes. Chronic sustained hypoxia causes neuroplasticity that contributes to ventilatory acclimatization to hypoxia (VAH). The purpose of this study is to explain the potential roles of the VAH mechanism developing because of chronic sustained hypoxia on respiratory neuroplasticity of vascular endothelial growth factor (VEGF) receptor activation on the nucleus tractus solitarius (NTS) and phrenic nerve. In this study 24 adult male Sprague-Dawley rats were used. Subjects were separated into four groups, a moderate-sham (mSHAM), severed-sham (sSHAM), moderate chronic sustained hypoxia (mCSH), and severed chronic sustained hypoxia (sCSH). Normoxic group (mSHAM and sSHAM) rats were exposed to 21% O₂ level (7 days) in the normobaric room while hypoxia group (mCSH and sCSH) rats were exposed to 13% and 10% O₂ level (7 days). Different protocols were applied for normoxic and hypoxia groups and ventilation, respiratory frequency, and tidal volume measurements were made with whole-body plethysmography. After the test HIF-1α, erythropoietin (EPO), and VEGFR-2 expressions on the NTS region in the medulla oblongata and phrenic nerve motor neurons in spinal cord tissue were analyzed using the immunohistochemical stain method. Examinations on the medulla oblongata and spinal cord tissues revealed that HIF-1α, EPO, and VEGFR-2 expressions increased in hypoxia groups compared to normoxic groups while a similar increase was also seen when respiratory parameters were assessed. Consequently, learning about VAH-related neuroplasticity mechanisms developed as a result of chronic continuous hypoxia will contribute to developing new therapeutical approaches to various diseases causing respiratory failure using brain plasticity without recourse to medicines.
Collapse
Affiliation(s)
- Nurhan Kuloglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey.,Department of Healthcare Services, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Kemal E Basaran
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
6
|
Pamenter ME, Go A, Fu Z, Powell FL. No evidence of a role for neuronal nitric oxide synthase in the nucleus tractus solitarius in ventilatory responses to acute or chronic hypoxia in awake rats. J Appl Physiol (1985) 2015; 118:750-9. [PMID: 25571988 PMCID: PMC4360023 DOI: 10.1152/japplphysiol.00333.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/02/2015] [Indexed: 11/22/2022] Open
Abstract
When exposed to a hypoxic environment, the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR and is termed ventilatory acclimatization to hypoxia (VAH). This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. The mechanisms of HVR plasticity are currently poorly understood. We hypothesized that changes in neuronal nitric oxide synthase (nNOS) activity or expression in the nucleus tractus solitarius contribute to this plasticity and underlie VAH in rats. To test this, we treated rats held in normoxia or 10% O2 (CSH, PIO2 = 70 Torr) for 7-9 days and measured ventilation in conscious, unrestrained animals before and after microinjecting the general NOS antagonist L-NG-Nitroarginine methyl ester into the nucleus tractus solitarius (NTS) or systemically injecting the nNOS-specific antagonist S-methyl-l-thiocitrulline. Localization of injection sites in the NTS was confirmed by histology following the experiment. We found that 1) neither NTS-specific nor systemic nNOS antagonism had any effect on hypoxia-mediated changes in breathing or metabolism (P > 0.05), but 2) nNOS protein expression was increased in the middle and caudal NTS by CSH. A persistent HVR after nNOS blockade in the NTS contrasts with results in awake mice, and our findings do not support the hypotheses that nNOS in the NTS contribute to the HVR or VAH in awake rats.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel Go
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Zhenxing Fu
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
7
|
Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 2014; 9:e88161. [PMID: 24516602 PMCID: PMC3917864 DOI: 10.1371/journal.pone.0088161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
Collapse
|
8
|
Astrocytes in the rat nucleus tractus solitarii are critical for cardiovascular reflex control. J Neurosci 2014; 33:18608-17. [PMID: 24259582 DOI: 10.1523/jneurosci.3257-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have shown that an antibody to dopamine-β-hydroxylase conjugated with saporin (anti-DBH-SAP) damages catecholamine neurons in the nucleus tractus solitarii (NTS) of rat, attenuates arterial baroreflexes, and leads to lability of arterial blood pressure, damage to cardiac myocytes, and, in some animals, sudden death. However, others have shown that injection of 6-hydroxydopamine (6-OHDA), a toxin devoid of saporin, also damaged NTS catecholamine neurons but did not lead to these cardiovascular changes. We found similar cardiovascular changes after injecting a different SAP conjugate to target NTS neurons with neurokinin (NK1) receptors. Because ribosome-inactivating proteins may be toxic to glia, we hypothesized that SAP, a ribosome-inactivating protein, might target glia whose loss could account for physiological changes. We tested this hypothesis by assessing effects on select neurons and on glia in the NTS after exposure to SAP, targeted SAP conjugates, or 6-OHDA. SAP and all SAP conjugates led to loss of immunoreactivity for glial fibrillary acidic protein, a marker for astrocytes, in the NTS while 6-OHDA did not. As reported previously, anti-DBH-SAP selectively killed noradrenergic neurons in the NTS while SAP conjugated to stabilized substance P (SSP-SAP) selectively killed neurons with NK1 receptors. In contrast, SAP produced no demonstrable neuronal damage. All injections led to activation of microglia in the NTS; however, only SAP and its conjugates attenuated cardiovascular reflexes while also producing lability of arterial pressure, damage to cardiac myocytes, and in some animals, sudden death. Thus, NTS astrocytes may play a role in mediating cardiovascular reflex transmission through the NTS.
Collapse
|
9
|
Lin LH, Nitschke Dragon D, Talman WT. Collateral damage and compensatory changes after injection of a toxin targeting neurons with the neurokinin-1 receptor in the nucleus tractus solitarii of rat. J Chem Neuroanat 2012; 43:141-8. [PMID: 22414622 DOI: 10.1016/j.jchemneu.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
Injection into the nucleus tractus solitarii (NTS) of toxins that target substance P (SP) receptors ablates neurons that express neurokinin-1 (NK1) receptors, attenuates baroreflexes, and results in increased lability of arterial pressure. We and others have shown that the toxin leads to loss of neurons containing SP receptors and loss of GABAergic neurons in the NTS; but given that neither type neuron is thought to be integral to baroreflex transmission in NTS, mechanisms responsible for the cardiovascular changes remained unclear. Because NK1 receptors colocalize with N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in NTS and because glutamate transmission may be integral to baroreflex transmission in the NTS we hypothesized that the toxic lesions may interrupt mechanisms for glutamate transmission. Interruption of those mechanisms could be responsible for the cardiovascular effects. We tested the hypothesis by performing fluorescent immunohistochemistry, confocal microscopy and image analysis after injecting stabilized SP-SAP (SSP-SAP) unilaterally into the NTS. We assessed changes in immunoreactivity (IR) of NMDA receptor subunit 1 (NMDAR1), AMPA receptor subunit 2 (GluR2), and 3 types of vesicular glutamate transporters (VGluT) as well as IR of gamma-aminobutyric acid receptors type b (GABAb), neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), and protein gene product 9.5 (PGP 9.5), a neuronal marker, in the NTS. When compared to that of the same section of the un-injected NTS, IR decreased significantly in the injected side for NMDAR1 (p<0.01), GluR2 (p<0.01), VGluT3 (p<0.01), GABAb (p<0.001), and PGP9.5 (p<0.001). In contrast, IR for VGluT1 (p<0.001), VGluT2 (p<0.001), nNOS (p<0.001), and TH (p<0.001) increased significantly. We conclude that pathologic effects following ablation of neurons with NK1 receptors in NTS may result from interruption of neurotransmission through other neurochemical systems associated with NK1 receptors-containing neurons.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|