1
|
Veser C, Carlier A, Dubois V, Mihăilă SM, Swapnasrita S. Embracing sex-specific differences in engineered kidney models for enhanced biological understanding of kidney function. Biol Sex Differ 2024; 15:99. [PMID: 39623463 PMCID: PMC11613810 DOI: 10.1186/s13293-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
In vitro models serve as indispensable tools for advancing our understanding of biological processes, elucidating disease mechanisms, and establishing screening platforms for drug discovery. Kidneys play an instrumental role in the transport and elimination of drugs and toxins. Nevertheless, despite the well-documented inter-individual variability in kidney function and the multifaceted nature of renal diseases-spanning from their origin, trigger and which segment of the kidney is affected-to presentation, progression and prognosis, few studies take into consideration the variable of sex. Notably, the inherent disparities between female and male biology warrants a more comprehensive representation within in vitro models of the kidney. The omission of sex as a fundamental biological variable carries the substantial risk of overlooking sex-specific mechanisms implicated in health and disease, along with potential differences in drug responsiveness and toxicity profiles between sexes. This review emphasizes the importance of incorporating cellular, biological and functional sex-specific features of renal activity in health and disease in in vitro models. For that, we thoroughly document renal sex-specific features and propose a strategic experimental framework to integrate sex-based differences into human kidney in vitro models by outlining critical design criteria to elucidate sex-based features at cellular and tissue levels. The goal is to enhance the accuracy of models to unravel renal mechanisms, and improve our understanding of their impact on drug efficacy and safety profiles, paving the way for a more comprehensive understanding of patient-specific treatment modalities.
Collapse
Affiliation(s)
- Charlotte Veser
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Silvia M Mihăilă
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Trink J, Nmecha IK, Zhang D, MacDonald M, Gao B, Krepinsky JC. Both sexes develop DKD in the CD1 uninephrectomized streptozotocin mouse model. Sci Rep 2023; 13:16635. [PMID: 37789041 PMCID: PMC10547794 DOI: 10.1038/s41598-023-42670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is characterized by a progressive increase in albuminuria and typical pathologic features. Recent studies have shown that sex is an important factor to consider in the pathogenesis of DKD. Presently, the hallmarks of this disease have primarily been studied in male rodent models. Here we explored the influence of sex in a murine model of DKD. CD1 mice underwent a right nephrectomy followed by intraperitoneal injection with 200 mg/kg streptozotocin to induce type 1 diabetes. Due to a high mortality rate, females required a reduction in streptozotocin to 150 mg/kg. Mice were followed for 12 weeks. Both sexes developed comparable hyperglycemia, while albuminuria and glomerular volume were increased to a greater degree in females and kidney hypertrophy was only seen in females. Males had a greater increase in blood pressure and glomerular basement membrane thickening, and a greater decrease in endpoint weight. Serum TGFβ1 levels were increased only in females. However, both sexes showed a similar increase in induction of kidney fibrosis. T cell and macrophage infiltration were also increased in both sexes. While some differences were observed, overall, both sexes developed clinical and pathologic characteristics of early DKD. Future studies evaluating therapeutic interventions can thus be assessed in both sexes of this DKD model.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Ifeanyi Kennedy Nmecha
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Dan Zhang
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Melissa MacDonald
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Bo Gao
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
3
|
Cao R, Su W, Sheng J, Guo Y, Su J, Zhang C, Wang H, Tang Y, Chen L, Qiao R, Chen X, Huang X, Zhou Y, Zhu L, Bai Z, Zhang X, Gustafsson JA, Wan Q, Lan HY, Guan Y. Estrogen receptor β attenuates renal fibrosis by suppressing the transcriptional activity of Smad3. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166755. [PMID: 37196860 DOI: 10.1016/j.bbadis.2023.166755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERβ) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERβ during RF progression in patients and animal models with CKD. We found that ERβ was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERβ deficiency markedly exacerbated, whereas ERβ activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERβ in RF. In addition, ERβ activation inhibited TGF-β1/Smad3 signaling, while loss of renal ERβ was associated with overactivation of the TGF-β1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERβ and RF. Mechanistically, activation of ERβ competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERβ exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERβ may represent as a promising therapeutic agent for RF.
Collapse
Affiliation(s)
- Rong Cao
- Department of Nephrology, the First Affiliated Hospital of Shenzhen University, the Second People's Hospital of Shenzhen, Shenzhen 518035, China
| | - Wen Su
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Jingyi Sheng
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210000, China
| | - Yanlin Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jie Su
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Honglian Wang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Research Center for Integrative Medicine, the Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yizhe Tang
- The First Affiliated Hospital of Shenzhen University, Health Science Center, China; The Second People's Hospital of Shenzhen, Institute of Translational Medicine, Medical Research Center, China
| | - Lei Chen
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Rongfang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Xiaocong Chen
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Xiaoru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Yunfeng Zhou
- Department of Physiology at the Basic Medical College, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Lizhen Zhu
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Zirui Bai
- Shenzhen University Health Science Center, Department of Pathology, Shenzhen University, Shenzhen 518071, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Jan-Ake Gustafsson
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, USA
| | - Qijun Wan
- Department of Nephrology, the First Affiliated Hospital of Shenzhen University, the Second People's Hospital of Shenzhen, Shenzhen 518035, China.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
4
|
Chen L, Chou CL, Yang CR, Knepper MA. Multiomics Analyses Reveal Sex Differences in Mouse Renal Proximal Subsegments. J Am Soc Nephrol 2023; 34:829-845. [PMID: 36758122 PMCID: PMC10125651 DOI: 10.1681/asn.0000000000000089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Sex-dependent differences in kidney function are recognized but the underlying molecular mechanisms are largely unexplored. Advances in genomics and proteomic technologies now allow extensive characterization of differences between the same cell types of males and females. Multiomics integrating RNA-seq, ATAC-seq, and proteomics data to investigate differences in gene expression, chromatin accessibility, and protein expression in proximal tubules of male and female mice identified many sex-biased genes and proteins associated with kidney functions, including metabolic and transport processes. Sex differences may also arise from variations of the interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to advance understanding of sex differences in cells of the proximal tubule. BACKGROUND Sex differences have been increasingly recognized as important in kidney physiology and pathophysiology, but limited resources are available for comprehensive interrogation of sex differences. METHODS RNA-seq and ATAC-seq of microdissected mouse proximal tubules and protein mass spectrometry of homogenized perfused mouse kidneys reveal differences in proximal tubule cells of males and females. RESULTS The transcriptomic data indicated that the major differences in the proximal tubules between the sexes were in the S2/S3 segments, and most of the sex-biased transcripts mapped to autosomes rather than to the sex chromosomes. Many of the transcripts exhibiting sex-biased expression are involved in monocarboxylic acid metabolic processes, organic anion transport, and organic acid transport. The ATAC-seq method on microdissected tubules captured chromatin accessibility. Many of the more than 7000 differentially accessible DNA regions identified were in distal regions. Motif analyses revealed a lack of direct involvement of estrogen receptors or the androgen receptor (absence of canonical hormone response elements), suggesting an indirect regulatory role of sex hormones. Instead, analyses identified several transcription factors (TFs) ( Tead1 , Nfia/b , and Pou3f3 ) whose interplay with proximal tubule-specific TFs ( e.g. , Hnf1b , Hnf4a ) may contribute to sex differences. Finally, the whole-kidney proteome was correlated with the transcriptome, and many sex-biased proteins ( e.g. , Cyp2e1, Acsm2/3) were identified. CONCLUSIONS Sex-dependent cis-regulatory elements interact with TFs in ways that lead to sex-biased gene expression in proximal tubule cells. These data are provided as a user-friendly web page at https://esbl.nhlbi.nih.gov/MRECA/PT/ .
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
5
|
Ren L, Li F, Di Z, Xiong Y, Zhang S, Ma Q, Bian X, Lang Z, Ye Q, Wang Y. Estradiol Ameliorates Acute Kidney Ischemia-Reperfusion Injury by Inhibiting the TGF-βRI-SMAD Pathway. Front Immunol 2022; 13:822604. [PMID: 35281024 PMCID: PMC8907449 DOI: 10.3389/fimmu.2022.822604] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Renal ischemia–reperfusion injury (IRI) is less extensive in females than males in both animals and humans; however, this protection diminishes after menopause, suggesting that estrogen plays a pivotal role in IRI, but the underlying mechanism remains largely unknown. Our study found that 45 min of warm ischemia was sufficient to induce significant pathological changes without causing death in model animals. Compared with male rats, female rats exhibited less extensive apoptosis, kidney injury, and fibrosis; these effects were worsened in ovariectomized (OVX) rats and ameliorated upon estradiol (E2) supplementation. Furthermore, the levels of TGF-βRI, but not TGF-βRII or TGF-β1, were significantly increased in OVX rats, accompanied by phosphorylated SMAD2/3 activation. Interestingly, the alteration trend of the nuclear ERα level was opposite that of TGF-βRI. Furthermore, dual luciferase reporter and chromatin immunoprecipitation assays showed that ERα could bind to the promoter region of TGF-βRI and negatively regulate its mRNA expression. Moreover, an in vitro study using NRK-52E cells showed that ERα knockdown blocked E2-mediated protection, while TGF-βRI knockdown protected cells against hypoxic insult. The findings of this study suggest that renal IRI is closely related to the TGF-βRI-SMAD pathway in females and that E2 exert its protective effect via the ERα-mediated transcriptional inhibition of TGF-βRI expression.
Collapse
Affiliation(s)
- Lian Ren
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fang Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyang Di
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qing Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Xiaoen Bian
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Zhiquan Lang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| |
Collapse
|
6
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
7
|
Adam RJ, Williams AC, Kriegel AJ. Comparison of the Surgical Resection and Infarct 5/6 Nephrectomy Rat Models of Chronic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F639-F654. [PMID: 35379002 DOI: 10.1152/ajprenal.00398.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5/6 nephrectomy rat remnant kidney model is commonly employed to study chronic kidney disease (CKD). This model requires removal of one whole kidney and two-thirds of the other. The two most common ways of producing the remnant kidney are surgical resection of poles, known as the polectomy (Pol) model, or ligation of upper and lower renal arterial branches, resulting in pole infarction (Inf). These models have much in common, but also major phenotypic differences, and thus respectively model unique aspects of human CKD. The purpose of this review is to summarize phenotypic similarities and differences between these two models and their relation to human CKD, while emphasizing their vascular phenotype. In this article we review studies that have evaluated arterial blood pressure, the renin-angiotensin-aldosterone-system (RAAS), autoregulation, nitric oxide, single nephron physiology, angiogenic and anti-angiogenic factors, and capillary rarefaction in these two models. Phenotypic similarities: both models spontaneously develop hallmarks of human CKD including uremia, fibrosis, capillary rarefaction, and progressive renal function decline. They both undergo whole-organ hypertrophy, hyperfiltration of functional nephrons, reduced renal expression of angiogenic factor VEGF, increased renal expression of the anti-angiogenic thrombospondin-1, impaired renal autoregulation, and abnormal vascular nitric oxide physiology. Key phenotypic differences: the Inf model develops rapid-onset, moderate-to-severe systemic hypertension, and the Pol model early normotension followed by mild-to-moderate hypertension. The Inf rat has a markedly more active renin-angiotensin-aldosterone-system. Comparison of these two models facilitates understanding of how they can be utilized for studying CKD pathophysiology (e.g., RAAS dependent or independent pathology).
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Mahesaniya A, Williamson CR, Keyvani Chahi A, Martin CE, Mitro AE, Lu P, New LA, Watson KL, Moorehead RA, Jones N. Sex Differences in Glomerular Protein Expression and Effects of Soy-Based Diet on Podocyte Signaling. Can J Kidney Health Dis 2022; 9:20543581221121636. [PMID: 36199279 PMCID: PMC9528100 DOI: 10.1177/20543581221121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Kidney disease is a major public health issue arising from loss of glomerular podocyte function, and there are considerable sex differences in its prognosis. Evidence suggests a renoprotective effect of estrogen and soy diet-derived phytoestrogens, although the molecular basis for this is poorly understood. Objective: Here, we aim to assess sex differences in expression of key proteins associated with podocyte survival and determine the effects of dietary soy on glomerular and podocyte signaling. Methods: Male and female FVB mice were fed control, low (1%), and high (20%) doses of isolated soy protein (ISP) in utero and until 100 days of age. Spot urine was collected to measure proteinuria and isolated glomeruli were used to quantify activated and total levels of nephrin, Akt, and ERK1/2. To investigate protective effects of specific soy phytoestrogens, cultured podocytes were treated with or without daidzein and subject to control or high glucose as a model of podocyte injury. Results: Nephrin and Akt were elevated at baseline in glomeruli from females compared to males. Both sexes that were fed 1% and 20% ISP displayed robust increases in total glomerular Akt compared to controls, and these effects were more prominent in females. A similar trend at both doses in both sexes was observed with activated Akt and total nephrin. Notably, males exclusively showed increased phosphorylation of nephrin and extracellular signal-regulated kinase (ERK) at the 1% ISP dose; however, no overt changes in urinary albumin excretion or podocin levels were observed, suggesting that the soy diets did not impair podocyte function. Finally, in cultured male and female podocytes, daidzein treatment suppressed high glucose-induced ERK activation. Conclusions: Together, our findings reveal a putative mechanism to explain the protective influence of sex on kidney disease progression, and they provide further evidence to support a beneficial role for dietary soy in preserving glomerular function.
Collapse
Affiliation(s)
- Afreeda Mahesaniya
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Casey R. Williamson
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
- Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alexander E. Mitro
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Laura A. New
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| |
Collapse
|
9
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. Gender differences in human adrenal cortex and its disorders. Mol Cell Endocrinol 2021; 526:111177. [PMID: 33582213 DOI: 10.1016/j.mce.2021.111177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
The adrenal cortex plays pivotal roles in the maintenance of blood volume, responsiveness to stress and the development of gender characteristics. Gender differences of human adrenal cortex have been recently reported and attracted increasing interests. Gender differences occur from the developing stage of the adrenal, in which female subjects had more activated stem cells with higher renewal capacity resulting in gender-associated divergent structures and functions of cortical zonations of human adrenal. Female subjects generally have the lower blood pressure with the lower renin levels and ACE activities than male subjects. In addition, HPA axis was more activated in female than male, which could possibly contribute to gender differences in coping with various stressful events in our life. Of particular interest, estrogens were reported to suppress RAAS but activate HPA axis, whereas androgens had opposite effects. In addition, adrenocortical disorders in general occur more frequently in female with more pronounced adrenocortical hormonal abnormalities possibly due to their more activated WNT and PRK signaling pathways with more abundant activated adrenocortical stem cells present in female adrenal glands. Therefore, it has become pivotal to clarify the gender influence on both clinical and biological features of adrenocortical disorders. We herein reviewed recent advances in these fields.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
10
|
Samadi-Noshahr Z, Ebrahimzadeh-Bideskan A, Hadjzadeh MAR, Shafei MN, Salmani H, Hosseinian S, Khajavi-Rad A. trans-Anethole attenuated renal injury and reduced expressions of angiotensin II receptor (AT1R) and TGF-β in streptozotocin-induced diabetic rats. Biochimie 2021; 185:117-127. [PMID: 33771655 DOI: 10.1016/j.biochi.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Fibrosis is a pathological process in diabetic nephropathy that causes renal failure and dysfunction. Given the known anti-diabetic effects of trans-Anethole (TA), we aimed to investigate its renoprotective and anti-fibrotic effect alone and in combination with losartan in diabetic nephropathy. Male Wistar rats received a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ) for diabetes induction. Diabetic rats were treated orally with saline, TA (80 mg/kg), losartan (Los; 10 mg/kg), or the combination of TA and losartan (TA-Los) daily for five weeks. Renal function was monitored during the study, and renal fibrosis, oxidative stress markers, apoptotic cells, and the expression and localization of AT1R, TGF-β1, and Col-IV were detected in the kidney. Results showed that TA alone and in combination with losartan was able to decrease blood glucose, urea, and creatinine levels and improve kidney function parameters. TA, Los, and TA-Los significantly reduced tubule vascular degeneration, glomerular and tubulointerstitial sclerosis, oxidative stress, and apoptotic cells. Immunohistochemistry analyses showed that TA, losartan, and TA-losartan combination downregulated the AT1R, Col IV, and TGF-β1 expression and distribution in diabetic rat kidneys. Results suggest that TA is able to suppress diabetic nephropathy in rats effectively, probably by decreasing blood glucose levels and downregulating AT1R and TGF-β1 expression.
Collapse
Affiliation(s)
- Zahra Samadi-Noshahr
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mosa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi-Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Ji H, de Souza AMA, Bajaj B, Zheng W, Wu X, Speth RC, Sandberg K. Sex-Specific Modulation of Blood Pressure and the Renin-Angiotensin System by ACE (Angiotensin-Converting Enzyme) 2. Hypertension 2020; 76:478-487. [PMID: 32564694 DOI: 10.1161/hypertensionaha.120.15276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We showed ACE (angiotensin-converting enzyme) 2 is higher in the kidney of male compared with female mice. To further investigate this sex difference, we examined the role of ACE2 in Ang-[1-8] (angiotensin [1-8])-induced hypertension and regulation of the renin-angiotensin system in the kidney of WT (wild type) and Ace2 KO (knockout) mice. Mean arterial pressure rose faster in WT male than WT female mice after Ang-[1-8] infusion. This sex difference was attenuated in ACE2 KO mice. Ang-[1-8] infusion reduced glomerular AT1R (angiotensin type 1 receptor) binding in WT female mice by 30%, and deletion of Ace2 abolished this effect. In contrast, Ang-[1-8] infusion increased glomerular AT1R binding in WT male mice by 1.2-fold, and this effect of Ang-[1-8] persisted in Ace2 KO male mice (1.3-fold). ACE2 also had an effect on renal protein expression of the neutral endopeptidase NEP (neprilysin), the enzyme that catabolizes Ang-[1-10] (angiotensin [1-10]), the precursor of Ang-[1-8]. Ang-[1-8] infusion downregulated NEP protein expression by 20% in WT male, whereas there was a slight increase in NEP expression in WT female mice. Deletion of Ace2 resulted in lowered NEP expression after Ang-[1-8] infusion in both sexes. These findings suggest sex-specific ACE2 regulation of the renin-angiotensin system contributes to female protection from Ang-[1-8]-induced hypertension. These findings have ramifications for the current coronavirus disease 2019 (COVID-19) pandemic, especially in hypertension since ACE2 is the SARS-CoV-2 receptor and hypertension is a major risk factor for poor outcomes.
Collapse
Affiliation(s)
- Hong Ji
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Aline M A de Souza
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Bilkish Bajaj
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Wei Zheng
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Xie Wu
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Robert C Speth
- Department of Pharmaceutical Science, School of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.)
| | - Kathryn Sandberg
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| |
Collapse
|
12
|
Maric-Bilkan C. Sex Differences in Diabetic Kidney Disease. Mayo Clin Proc 2020; 95:587-599. [PMID: 32138885 DOI: 10.1016/j.mayocp.2019.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
While the global prevalence of both type 1 and type 2 diabetes mellitus is similar in men and women, the consequences of diabetes on associated end-organ complications, including diabetic kidney disease appear to be more sex-specific. Particularly, women with diabetes have higher mortality rates for diabetes-related deaths, and higher prevalence of diabetic kidney disease risk factors such as hypertension, hyperglycemia, obesity, and dyslipidemia. However, the evidence for the impact of sex on diabetic kidney disease prevalence and disease progression is limited and inconsistent. Although most studies agree that the protective effect of the female sex against the development of kidney disease is diminished in the setting of diabetes, the reasons for this observation are unclear. Whether or not sex differences exist in the risk of diabetic kidney disease is also unclear, with studies reporting either higher risk in men, women, or no sex differences. Despite the remaining controversies, some of the factors that associate with sex differences in the risk of diabetic kidney disease are age at onset, and type and duration of diabetes. There is growing appreciation of the importance of sex hormones in the regulation of renal function, with estrogens generally considered to be renoprotective. Although some progress has been made towards better understanding of the mechanisms by which sex hormones play a role in the pathophysiology of diabetic kidney disease, the translational potential of this knowledge is still underappreciated. A better understanding of sex differences in diabetic kidney disease may provide basis for personalized and sex-specific treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Christine Maric-Bilkan
- Division of Kidney, Urology and Hematology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
13
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
14
|
El-Gendy AA, Elsaed WM, Abdallah HI. Potential role of estradiol in ovariectomy-induced derangement of renal endocrine functions. Ren Fail 2019; 41:507-520. [PMID: 31216906 PMCID: PMC6586115 DOI: 10.1080/0886022x.2019.1625787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Menopause is an important physiological event associated with structural and functional changes in the kidneys. An animal model of bilateral ovariectomy was used to study the effects of estrogen depletion, replacement and antiestrogen on renal structure and endocrine function. Sixty female rats were divided into six groups; group I was the control group, the remaining five groups underwent ovariectomy: group II received no treatment. The other groups received estradiol in group III, tamoxifen in group IV, estradiol followed by tamoxifen in group V and tamoxifen followed by estradiol in group VI. Serum creatinine, blood urea nitrogen, and endocrine functions of kidney were measured. Tissue samples were examined both microscopically for beta estrogen receptors and ultrastructurally for cell changes. Groups II, IV & VI showed a significant increase in creatinine, blood urea nitrogen, renal malondialdehyde, renal erythropoietin, plasma renin and plasma prostaglandin E2 and a significant decrease in renal antioxidants and serum vitamin D3. Groups III &V had a significant decrease in creatinine, blood urea nitrogen, renal malondialdehyde and renal erythropoietin with an increase in renal antioxidants, plasma prostaglandin E2 and serum vitamin D3. Histopathological and ultrastructural examinations revealed atrophic tubular changes in group II. The changes were less marked in groups III &V and more extensive in groups IV & VI. Estrogen receptor beta staining showed progressively increased expression in the absence of estrogen. Structural and most endocrine functions of the kidney were significantly affected by estradiol deficiency. Estradiol replacement exhibited a protective effect on renal tissue and endocrine functions.
Collapse
Affiliation(s)
- Ahmed A El-Gendy
- a Department of Medical Physiology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,b Department of Medical Physiology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Wael M Elsaed
- c Department of Anatomy & Embryology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,d Department of Anatomy & Embryology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Hesham I Abdallah
- c Department of Anatomy & Embryology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,e Department of Anatomy & Embryology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| |
Collapse
|
15
|
Novella S, Pérez‐Cremades D, Mompeón A, Hermenegildo C. Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J Physiol 2019; 597:4873-4886. [DOI: 10.1113/jp278063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Susana Novella
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Daniel Pérez‐Cremades
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Ana Mompeón
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Carlos Hermenegildo
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| |
Collapse
|
16
|
Lee SH, Lee YH, Jung SW, Kim DJ, Park SH, Song SJ, Jeong KH, Moon JY, Ihm CG, Lee TW, Kim JS, Sohn IS, Lee SY, Kim DO, Kim YG. Sex-related differences in the intratubular renin-angiotensin system in two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2019; 317:F670-F682. [PMID: 31339773 DOI: 10.1152/ajprenal.00451.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The intratubular renin-angiotensin system (RAS) is thought to play an essential role in hypertensive renal disease, but information regarding sex-related differences in this system is limited. The present study investigated sex differences in the intratubular RAS in two-kidney, one-clip (2K1C) rats. A 2.5-mm clip was placed on the left renal artery of Sprague-Dawley rats, and rats were euthanized 3 or 5 wk after the operation. Systolic blood pressure increased in 2K1C rats in both sexes but was significantly higher in male rats than in female rats, and an antihypertensive effect was not observed in 2K1C ovariectomized (OVX) female rats. Compared with male 2K1C rats, intratubular angiotensin-converting enzyme (ACE) and ANG II were repressed, and intratubular ACE2, angiotensin (1-7), and Mas receptor were increased in both kidneys in female 2K1C rats 5 wk after surgery. Comparison with male and female rats and intratubular mRNA levels of ACE and ANG II type 1 receptor were augmented in OVX female rats, regardless of the clipping surgery 3 wk postoperation. ANG II type 2 receptor was upregulated in female rats with or without OVX; thus, the ANG II type 1-to-type 2 receptor ratio was higher in male rats than in female rats. In conclusion, female rats were protected from hypertensive renal and cardiac injury after renal artery clipping. An increase in the intratubular nonclassic RAS [ACE2/angiotensin (1-7)/Mas receptor] and a decrease in the ANG II type 1-to-type 2 receptor ratio could limit the adverse effects of the classic RAS during renovascular hypertension in female rats, and estrogen is suggested to play a primary role in the regulation of intratubular RAS components.
Collapse
Affiliation(s)
- Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Dong Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seon Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Seok Jong Song
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ju Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Tae Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Il Suk Sohn
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Dong-Ok Kim
- Division of Anesthesiology, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Abstract
OBJECTIVE Epidemiological studies confirm that hypertensive patients respond differently to renin-angiotensin system (RAS) inhibition depending on their gender. The aim of present work is to focus on sex-dependent differences in RAS regulation under conditions of increased salt intake. METHOD To investigate RAS, we measured the expression of angiotensinogen (Agt) mRNA, angiotensin receptor type 1 (AT1) mRNA and mitochondria assembly receptor (MasR) in the liver of rats under control conditions and after feeding with a salt diet (2% NaCl). In parallel, vascular endothelial growth factor A (VEGF-A) mRNA was analyzed. RESULTS Regression analysis revealed sex-dependent differences in the correlation between mRNA expression of AT1 and that of Agt, MasR and VEGF-A in both groups. There was a significant negative correlation between AT1 and Agt mRNA expression in the male control group, but this correlation disappeared in males exposed to a salt diet. In females, AT1 and Agt expression correlated only in the group exposed to the salt diet. In control males, there was a borderline trend to correlation between AT1 and MasR mRNA expression. The correlation between AT1 and VEGF-A mRNA expression was significant only in the control females, however, after exposure to a salt diet, this correlation diminished. CONCLUSIONS We hypothesize that RAS components expression is compensated differently in males and females. The observed loss of compensatory relationships in RAS between AT1 and Agt and AT1 and MasR in male rats under a salt diet can contribute to the differences observed in human with hypertension associated with an unhealthy diet.
Collapse
|
18
|
Kim C, Ricardo AC, Boyko EJ, Christophi CA, Temprosa M, Watson KE, Pi-Sunyer X, Kalyani RR. Sex Hormones and Measures of Kidney Function in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab 2019; 104:1171-1180. [PMID: 30398516 PMCID: PMC6391355 DOI: 10.1210/jc.2018-01495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Despite sex differences in chronic kidney disease (CKD) onset and progression, it is unclear whether endogenous sex hormones are associated with kidney function in persons without CKD. DESIGN AND METHODS We conducted a secondary analysis of the Diabetes Prevention Program (DPP) and its follow-up observational study, the DPP Outcomes Study, over 11 years. Participants included overweight and glucose-intolerant men (n = 889) and pre- and postmenopausal women (n = 1281) not using exogenous sex hormones and whose urine albumin-to-creatinine ratio (ACR) was <30 mg/g and normal estimated glomerular filtration ratio (eGFR) was ≥60 mL/min/1.73 m2 at randomization. We examined the association between sex hormone levels and incidence of low eGFR and/or ACR ≥30 mg/g on at least one measurement. RESULTS At randomization, the mean (SD) eGFR was 94 (15) mL/min/1.73 m2; the median ACR (interquartile range) was 4.5 (3.3 to 7.6) mg/g. During follow-up, 187 men (24.6%) and 263 women (24.2%) had incident albuminuria and 136 men (17.9%) and 123 women (11.3%) had incident low eGFR. Among men, higher baseline sex hormone-binding globulin (SHBG) level was associated with reduced low eGFR risk (hazard ratio per SD, 0.80; 95% CI, 0.57 to 0.90) in adjusted analyses. No significant associations were observed among women. There were significant interactions between sex steroid levels and low eGFR by randomization arm. CONCLUSION Sex steroids were not associated with development of low eGFR or albuminuria. Among men, higher SHBG level was associated with reduced risk of low eGFR on at least one measurement.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics & Gynecology, and Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Ana C Ricardo
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Edward J Boyko
- Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - Marinella Temprosa
- Biostatistics Center, George Washington University, Rockville, Maryland
- Department of Epidemiology & Biostatistics, George Washington University, Washington, DC
| | - Karol E Watson
- Department of Medicine, University of California, Los Angeles, California
| | - Xavier Pi-Sunyer
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York City, New York
| | - Rita R Kalyani
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
19
|
Microbial Metabolites in Cancer Promotion or Prevention. MICROBIOME AND CANCER 2019. [DOI: 10.1007/978-3-030-04155-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl Psychiatry 2019; 9:36. [PMID: 30696810 PMCID: PMC6351608 DOI: 10.1038/s41398-019-0374-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.
Collapse
|
21
|
Wolf E, Diaz EJ, Hollis AN, Hoang TA, Azad HA, Bendt KM, Griffiths RC, Sparks MA. Vascular type 1 angiotensin receptors control blood pressure by augmenting peripheral vascular resistance in female mice. Am J Physiol Renal Physiol 2018; 315:F997-F1005. [PMID: 29897266 DOI: 10.1152/ajprenal.00639.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (ANG II) is a major mediator of hypertension pathogenesis. In addition, there are well-documented differences in expression of the renin-angiotensin system (RAS) components and ANG II responses between males and females, which may explain sex differences in blood pressure (BP) and hypertension epidemiology. We previously showed that type 1A angiotensin (AT1A) receptors in vascular smooth muscle cells (VSMCs) play a critical role in BP regulation and hypertension pathogenesis, but these studies were carried out in male mice. Therefore, the major goal of the current studies was to examine the impact of VSMC AT1A receptors on BP and hypertension pathogenesis in female mice. We found that elimination of VSMC AT1A receptors in female mice reduced (≈8 mmHg) baseline BP without altering sodium sensitivity. The severity of ANG II-induced hypertension was diminished (≈33% reduction in BP), particularly during the last 2 wk of chronic ANG II infusion, compared with controls, but natriuresis was not altered during the first 5 days of ANG II infusion. Urinary norepinephrine levels were enhanced in female SMKO compared with control mice. There was a virtually complete elimination of ANG II-induced kidney hemodynamic responses with attenuation of acute vasoconstrictor responses in the systemic vasculature. These findings demonstrate that direct vascular actions of AT1A receptors play a prominent role in BP control and hypertension pathogenesis in female mice.
Collapse
Affiliation(s)
- Erin Wolf
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Edward J Diaz
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Alison N Hollis
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thien A Hoang
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Hooman A Azad
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Katharine M Bendt
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Robert C Griffiths
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina.,Renal Section, Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|
22
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
23
|
Sun H, Sun M. Age- and gender-dependent associations of blood pressure and serum sodium and potassium-renal and extrarenal regulations. ACTA ACUST UNITED AC 2018; 12:392-401. [PMID: 29609980 DOI: 10.1016/j.jash.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Association analyses between blood pressure (BP) and serum sodium and potassium for 14,657 men and 16,977 women between ages 12 and 85 years show that responses of BP to serum sodium and potassium are age and gender dependent. The data were from the National Health and Nutrition Examination Survey between 2003 and 2014. Associations between serum sodium and BP are positive only for advanced age groups and for serum sodium level greater than 139-140 mmol/L in less advanced groups. These positive associations can be explained by traditional renal-centered mechanism. Inverse associations between systolic BP and serum sodium exist when sodium is less than ∼140 mmol/L in less advanced age groups (<60 for men and <70 for women). These inverse associations can partially be explained by the extrarenal regulatory mechanism in which sodium storage in negatively charged glycosaminoglycans in the interstitium may be involved. Associations of high serum potassium and low BP are consistent and exist in most age groups. Effect of potassium on systolic BP and diastolic BP are more prominent in less advanced age groups. Age-dependent associations between sodium and BP support the theory that sodium homeostasis in the body may not be regulated by renal-centered responses alone. There might be regulation of an extrarenal system in which sodium attraction by negatively charged glycosaminoglycans plays a role.
Collapse
Affiliation(s)
- Hongbing Sun
- Health Studies Institute, GEMS Department, Rider University, Lawrenceville, NJ.
| | - Michael Sun
- Department of Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
24
|
Philogene MC, Zhou S, Lonze BE, Bagnasco S, Alasfar S, Montgomery RA, Kraus E, Jackson AM, Leffell MS, Zachary AA. Pre-transplant Screening for Non-HLA Antibodies: Who should be Tested? Hum Immunol 2018; 79:195-202. [PMID: 29428484 DOI: 10.1016/j.humimm.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
Retrospective studies of angiotensin II type 1 receptor antibodies (AT1R-Ab) and anti-endothelial cell antibodies (AECA) have linked these antibodies to allograft injury. Because rising healthcare costs dictate judicious use of laboratory testing, we sought to define characteristics of kidney transplant recipients who may benefit from screening for non-HLA antibodies. Kidney recipients transplanted between 2011 and 2016 at Johns Hopkins, were evaluated for AT1R-Ab and AECA. Pre-transplant antibody levels were compared to clinical and biopsy indications of graft dysfunction. Biopsies were graded using the Banff' 2009-2013 criteria. AT1R-Ab and AECA were detected using ELISA and endothelial cell crossmatches, respectively. AT1R-Ab levels were higher in patients who were positive for AECAs. Re-transplanted patients (p < 0.0001), males (p = 0.008) and those with FSGS (p = 0.04) and younger (p = 0.04) at time of transplantation were more likely to be positive for AT1R-Ab prior to transplantation. Recipients who were positive for AT1R-Ab prior to transplantation had increases in serum creatinine within 3 months post-transplantation (p < 0.0001) and developed abnormal biopsies earlier than did AT1R-Ab negative patients (126 days versus 368 days respectively; p = 0.02). Defining a clinical protocol to identify and preemptively treat patients at risk for acute rejection with detectable non-HLA antibodies is an important objective for the transplant community.
Collapse
Affiliation(s)
- Mary Carmelle Philogene
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Sheng Zhou
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Bonnie E Lonze
- Department of Surgery, New York University Langone Transplant Institute, New York, NY, United States
| | - Serena Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sami Alasfar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert A Montgomery
- Department of Surgery, New York University Langone Transplant Institute, New York, NY, United States
| | - Edward Kraus
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Annette M Jackson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mary S Leffell
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea A Zachary
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Li J, Hatano R, Xu S, Wan L, Yang L, Weinstein AM, Palmer L, Wang T. Gender difference in kidney electrolyte transport. I. Role of AT 1a receptor in thiazide-sensitive Na +-Cl - cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 2017; 313:F505-F513. [PMID: 28566500 DOI: 10.1152/ajprenal.00087.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
We studied gender differences in Na+-Cl- cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.
Collapse
Affiliation(s)
- Jing Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.,Department of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Ryo Hatano
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Laxiang Wan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Lawrence Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
26
|
Epochs in the depressor/pressor balance of the renin-angiotensin system. Clin Sci (Lond) 2017; 130:761-71. [PMID: 27128801 DOI: 10.1042/cs20150939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin system (RAS) plays a commanding role in the regulation of extracellular fluid homoeostasis. Tigerstadt and Bergman first identified the RAS more than two centuries ago. By the 1980s a voyage of research and discovery into the mechanisms and actions of this system led to the development of drugs that block the RAS, which have become the mainstay for the treatment of cardiovascular and renal disease. In the last 25 years new components of the RAS have come to light, including the angiotensin type 2 receptor (AT2R) and the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang(1-7)]/Mas receptor (MasR) axis. These have been shown to counter the classical actions of angiotensin II (AngII) at the predominant angiotensin type 1 receptor (AT1R). Our studies, and those of others, have demonstrated that targeting these depressor RAS pathways may be therapeutically beneficial. It is apparent that the evolution of both the pressor and depressor RAS pathways is distinct throughout life and that the depressor/pressor balance of the RAS vary between the sexes. These temporal patterns of expression suggest that therapies targeting the RAS could be optimized for discrete epochs in life.
Collapse
|
27
|
Pijacka W, Clifford B, Walas D, Tilburgs C, Joles JA, McMullen S, Langley-Evans SC. Impact of gonadectomy on blood pressure regulation in ageing male and female rats. Biol Sex Differ 2016; 7:64. [PMID: 27980712 PMCID: PMC5135757 DOI: 10.1186/s13293-016-0111-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual dimorphism in blood pressure has been associated with differential expression of the angiotensin II (AII) receptors and with activity of the nervous system. It is generally accepted that ageing affects kidney function as well as autonomic nervous system and hormonal balance. Given that hypertension is more prevalent in men than women until women reach their seventh decade, we hypothesised that females would be relatively protected from adverse effects of ageing compared to males and that this would be mediated by the protective effect of ovarian steroids. METHODS Intact and gonadectomised male and female normotensive Wistar rats aged 6, 12 and 18 months were used to study renal function, blood pressure, heart rate, and blood pressure variability. RESULTS We observed that intact females had lower levels of proteinuria and higher (12.5%) creatinine clearance compared to intact males and that this difference was abolished by castration but not by ovariectomy. Ovariectomy resulted in a change by 9% in heart rate, resulting in similar cardiovascular parameters to those observed in males or gonadectomised males. Spectral analysis of systolic blood pressure revealed that high-frequency power spectra were significantly elevated in the females vs. males and were reduced by ovariectomy. CONCLUSIONS Taken altogether, the results show that females are protected from age-related declining renal function and to a lesser extent from rising blood pressure in comparison to males. Whilst ovariectomy had some deleterious effects in females, the strongest effects were associated with gonadectomy in males, suggesting a damaging effect of male hormones.
Collapse
Affiliation(s)
- Wioletta Pijacka
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK ; School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Bethan Clifford
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Dawid Walas
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Chantal Tilburgs
- Department of Nephrology & Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Sarah McMullen
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Simon C Langley-Evans
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
28
|
Tazumi S, Yokota N, Kawakami M, Omoto S, Takamata A, Morimoto K. Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R898-R905. [DOI: 10.1152/ajpregu.00415.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether chronic estrogen replacement in ovariectomized rats inhibits the pressor response to psychological stress by attenuating the activation of the renin-angiotensin system. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, the rats were randomly assigned to be implanted subcutaneously with pellets containing either 17β-estradiol (E2) or placebo (Pla). After 4 wk of treatment, the rats underwent cage-switch stress and, in a separate experiment, a subset received an infusion of angiotensin II. The cage-switch stress rapidly elevated blood pressure (BP) and heart rate (HR) as measured by radiotelemetry in both groups. However, the BP and HR responses to the stress were significantly attenuated in the E2 group compared with the Pla group. An angiotensin II type 1 receptor blocker, losartan, given in drinking water, abolished the difference in the pressor response to stress between the two groups. Moreover, the stress-induced elevation in plasma renin activity and angiotensin II concentration was significant in the Pla group, but not in the E2 group. In addition, the expression of renin mRNA in the kidney was lower in the E2 group relative to the Pla group. Finally, we found that intravenous angiotensin II infusion increased BP and decreased HR to a similar degree in both groups. These results suggest that the inhibitory effects of estrogen on psychological stress-induced activation of the renin-angiotensin system could be at least partially responsible for the suppression of the pressor responses to psychological stress seen in estrogen-replaced ovariectomized rats.
Collapse
Affiliation(s)
- Shoko Tazumi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Naoko Yokota
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Mizuho Kawakami
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Sayo Omoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| |
Collapse
|
29
|
Feodoroff M, Harjutsalo V, Forsblom C, Sandholm N, Groop PH. The impact of smoking on the effect of the rs4972593 genetic variant on end-stage renal disease. Diabet Med 2016; 33:1301-3. [PMID: 26535560 DOI: 10.1111/dme.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/14/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M Feodoroff
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - V Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, The Chronic Disease Prevention Unit, Helsinki, Finland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - P-H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- The Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
30
|
Cuevas E, Arreola-Guerra JM, Hernández-Méndez EA, Salcedo I, Castelán N, Uribe-Uribe NO, Vilatobá M, Contreras-Saldívar AG, Sánchez-Cedillo AI, Ramírez JB, de Rungs D, Granados J, Morales-Buenrostro LE, Alberú J. Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies. Nephrol Dial Transplant 2016; 31:1738-45. [PMID: 27220757 DOI: 10.1093/ndt/gfw204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/05/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Angiotensin II type 1 receptor antibodies (AT1Rabs) have been associated with significantly reduced graft survival. Earlier graft loss has been observed in patients who had pretransplant AT1Rabs and posttransplant donor-specific antibodies (DSA). METHODS The main goal of this retrospective cohort study was to examine the association between AT1Rabs and the time period to detection of de novo human leukocyte antigen (HLA-DSA) posttransplantation in living donor kidney transplant recipients (KTR). The analysis included 141 KTRs. Pretransplant frozen serum samples were tested for AT1Rabs by ELISA and HLA-DSA by SAB (Luminex) at both the pre- and post-KT time points. RESULTS The median AT1Rab level was 9.13 U (interquartile range 5.22-14.33). After a mean follow-up period of 3.55 years, 48 patients were found to harbour de novo HLA-DSAs. The presence of AT1Rabs [hazard ratio (HR) 1.009, 95% confidence interval (CI) 1.002-1.01, P = 0.010], male-to-male transplantation (HR 2.57, 95% CI 1.42-4.67, P = 0.002) and antecedent borderline changes or acute cellular rejection (ACR) (HR 2.47, 95% CI 1.29-4.75, P = 0.006) were significantly associated with de novo DSA detection. A dose-dependent association between AT1Rab levels (<10 U, 10.1-16.9 U, 17-29.9 U and >30 U) and de novo DSA detection was observed (log-rank P = 0.0031). After multivariate analysis of AT1Rab levels (continuous variable), AT1Rabs >30 U, male-to-male transplantation, donor age, higher class I percentage of Panel Reactive Antibody and antecedent borderline changes or ACR remained as independent significant risk factors for the detection of de novo DSAs. CONCLUSIONS The findings suggest that higher levels of pretransplant circulating antibodies against AT1R (>30 U) in kidney graft recipients constitute an independent risk factor for earlier de novo HLA-DSA detection during the posttransplant period.
Collapse
Affiliation(s)
- Eric Cuevas
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - José M Arreola-Guerra
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico Division of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Erick A Hernández-Méndez
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Isaac Salcedo
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Natalia Castelán
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Norma O Uribe-Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Mario Vilatobá
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Alan G Contreras-Saldívar
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Aczel I Sánchez-Cedillo
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Julia B Ramírez
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - David de Rungs
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Josefina Alberú
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| |
Collapse
|
31
|
Ahmed SB, Ramesh S. Sex hormones in women with kidney disease. Nephrol Dial Transplant 2016; 31:1787-1795. [DOI: 10.1093/ndt/gfw084] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/19/2016] [Indexed: 12/21/2022] Open
|
32
|
Dai SY, Fan J, Shen Y, He JJ, Peng W. Endoplasmic reticulum stress in the brain subfornical organ contributes to sex differences in angiotensin-dependent hypertension in rats. Acta Physiol (Oxf) 2016; 217:33-44. [PMID: 26639993 DOI: 10.1111/apha.12635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
Abstract
AIM Endoplasmic reticulum (ER) stress in the brain subfornical organ (SFO), a key cardiovascular regulatory centre, has been implicated in angiotensin (ANG) II-induced hypertension in males; however, the contribution of ER stress to ANG II-induced hypertension in females is unknown. Female hormones have been shown to prevent ER stress in the periphery. We tested the hypothesis that females are less susceptible to ANG II-induced SFO ER stress than males, leading to sex differences in hypertension. METHODS Male, intact and ovariectomized (OVX) female rats received a continuous 2-week subcutaneous infusion of ANG II or saline. Additional male, intact and OVX female rats received intracerebroventricular (ICV) injection of ER stress inducer tunicamycin. RESULTS ANG II, but not saline, increased blood pressure (BP) in both males and females, but intact females exhibited smaller increase in BP and less depressor response to ganglionic blockade compared with males or OVX females. Molecular studies revealed that ANG II elevated expression of ER stress biomarkers and Fra-like activity in the SFO in both males and females; however, elevations in these parameters were less in intact females than in males or OVX females. Moreover, ICV tunicamycin induced smaller elevation in BP and less increase in expression of ER stress biomarkers in the SFO in intact females compared with males or OVX females. CONCLUSION The results suggest that differences in ANG II-induced brain ER stress between males and females contribute to sex differences in ANG II-mediated hypertension and that oestrogen protects females against ANG II-induced brain ER stress.
Collapse
Affiliation(s)
- S.-Y. Dai
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J. Fan
- Department of Pathology; Hebei North University; Zhangjiakou China
| | - Y. Shen
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J.-J. He
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - W. Peng
- Life Science Research Center and Department of Physiology and Pathophysiology; Hebei North University; Zhangjiakou China
| |
Collapse
|
33
|
Jennings BL, Moore JA, Pingili AK, Estes AM, Fang XR, Kanu A, Gonzalez FJ, Malik KU. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice. Am J Physiol Renal Physiol 2015; 308:F981-92. [PMID: 25694484 DOI: 10.1152/ajprenal.00597.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/11/2015] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg(-1)·min(-1)) infused by miniosmotic pumps for 2 wk in female Cyp1b1(+/+) mice did not alter water consumption, urine output, Na(+) excretion, osmolality, or protein excretion. However, in Cyp1b1(-/-) mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na(+) excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol.
Collapse
Affiliation(s)
- Brett L Jennings
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph A Moore
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ajeeth K Pingili
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anne M Estes
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alie Kanu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee;
| |
Collapse
|
34
|
Brooks VL, Shi Z, Holwerda SW, Fadel PJ. Obesity-induced increases in sympathetic nerve activity: sex matters. Auton Neurosci 2014; 187:18-26. [PMID: 25435000 DOI: 10.1016/j.autneu.2014.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/02/2014] [Accepted: 11/08/2014] [Indexed: 01/18/2023]
Abstract
Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| | - Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Seth W Holwerda
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
35
|
Werner KB, Elmståhl S, Christensson A, Pihlsgård M. Male sex and vascular risk factors affect cystatin C-derived renal function in older people without diabetes or overt vascular disease. Age Ageing 2014; 43:411-7. [PMID: 24321840 PMCID: PMC4001172 DOI: 10.1093/ageing/aft191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background/objectives: to explore the effect of ageing on renal function with cystatin C as the marker of glomerular filtration rate (GFR) in the general population without vascular disease or diabetes. Design: a cross-sectional analysis of a healthy subset from the Good Aging in Skåne-cohort study representative of the Swedish general population. Subjects: 1252 participants without vascular disease and diabetes (43.9% men) of whom 203 were over 80 years old were included from the original cohort of 2931. Methods: plasma cystatin C and plasma creatinine were used as markers for GFR. Estimated GFR (eGFR) was calculated with three chronic kidney disease epidemiology collaboration (CKD-EPI) formulas involving cystatin C, creatinine or both. Results: the median for plasma cystatin C was 0.93 mg/l (60–69 years old), 1.04 (70–79 years old) and 1.24 (80+ years old). The difference in mg/l between the 5th and 95th percentile was 0.46, 0.62 and 0.90 for these age groups. Male sex increased the age effect on plasma cystatin C levels with 0.004 mg/l/year (P = 0.03), adjusted for vascular risk factors. Smoking, lower HDL and higher diastolic blood pressure were associated with higher cystatin C levels. 54.7% (CKD-EPI creatinine) to 73.9% (CKD-EPI cystatin C) of the 80+ had an eGFR < 60 ml/min/1.73 m2. Conclusion: non-diabetics without overt vascular disease exhibit an age related but heterogeneous decline in renal function. The ageing effect is more pronounced in men. At least half of healthy 80+ years old could be expected to have at least CKD Stage 3 with eGFR < 60 ml/min/1.73 m2.
Collapse
Affiliation(s)
- Karin Birgitta Werner
- Department of Health Sciences, Lund University, Geriatriska kliniken Jan Waldenströmgata 35, Malmö 205 02, Sweden
- Department of Geriatrics, Skåne University Hospital, Jan Waldenströmsgata 35, Malmö 205 02, Sweden
- Address correspondence to: K. B. Werner.
| | - Sölve Elmståhl
- Department of Health Sciences, Lund University, Geriatriska kliniken Jan Waldenströmgata 35, Malmö 205 02, Sweden
- Department of Geriatrics, Skåne University Hospital, Jan Waldenströmsgata 35, Malmö 205 02, Sweden
| | - Anders Christensson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nephrology and Transplantation, Skåne University Hospital, Malmö, Sweden
| | - Mats Pihlsgård
- Department of Health Sciences, Lund University, Geriatriska kliniken Jan Waldenströmgata 35, Malmö 205 02, Sweden
| |
Collapse
|
36
|
Liu J, Yosten GLC, Ji H, Zhang D, Zheng W, Speth RC, Samson WK, Sandberg K. Selective inhibition of angiotensin receptor signaling through Erk1/2 pathway by a novel peptide. Am J Physiol Regul Integr Comp Physiol 2014; 306:R619-26. [PMID: 24523339 DOI: 10.1152/ajpregu.00562.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A seven-amino acid peptide (PEP7) is encoded within a short open reading frame within exon 2 (E2) in the 5'-leader sequence (5'LS) upstream of the rat ANG 1a-receptor (rAT1aR) mRNA. A chemically synthesized PEP7 markedly inhibited ANG II-induced Erk1/2 activation in cell culture by 62% compared with a scrambled PEP7 (sPEP7) [pErk1/2/Erk1/2 (AU): ANG II, 1.000 ± 0.0, ANG II+PEP7, 0.3812 ± 0.086, ANG II+sPEP7, 1.069 ± 0.18; n = 3]. Under these same conditions, PEP7 had no effect on ANG II-stimulated inositol-trisphosphate production. PEP7 also had no effect on epidermal growth factor- and phorbol methyl ester-induced Erk1/2 activation, suggesting PEP7 selectively inhibits AT1aR-mediated Erk1/2 signaling. PEP7 intracerebroventricularly inhibited ANG II-induced saline intake but had no effect on water intake in male and female rats, indicating PEP7 also selectively inhibits the ANG II-Erk1/2 pathway in vivo since saline drinking is Erk1/2-mediated, while water drinking is not. PEP7 inhibition of ANG II-induced saline ingestion was rapidly reversed by a subsequent intracerebroventricular injection of an oxytocin antagonist, suggesting when PEP7 blocks ANG II-stimulated Erk1/2 activation, animals no longer ingest saline to balance the continued water intake, due to the release of oxytocin and its subsequent inhibitory effects on saline drinking. PEP7 also attenuated ANG II-induced increases in arterial pressure by 35% compared with sPEP7 at the same dose. Thus, we have identified a novel peptide encoded within the rAT1aR E2 that selectively inhibits Erk1/2 activation, resulting in physiological consequences for sodium ingestion and arterial pressure that may have implications for treating sodium-sensitive diseases like hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Jun Liu
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, D.C.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Satta E, Magno C, Galì A, Inferrera A, Granese R, Aloisi C, Buemi M, Bellinghieri G, Santoro D. Sexual dysfunction in women with diabetic kidney. Int J Endocrinol 2014; 2014:346834. [PMID: 25276130 PMCID: PMC4167806 DOI: 10.1155/2014/346834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/12/2014] [Indexed: 12/04/2022] Open
Abstract
Few studies address alteration of sexual function in women with diabetes and chronic kidney disease (CKD). Quality of life surveys suggest that discussion of sexual function and other reproductive issues are of psychosocial assessment and that education on sexual function in the setting of chronic diseases such as diabetes and CKD is widely needed. Pharmacologic therapy with estrogen/progesterone and androgens along with glycemic control, correction of anemia, ensuring adequate dialysis delivery, and treatment of underlying depression are important. Changes in lifestyle such as smoking cessation, strength training, and aerobic exercises may decrease depression, enhance body image, and have positive impacts on sexuality. Many hormonal abnormalities which occur in women with diabetes and CKD who suffer from chronic anovulation and lack of progesterone secretion may be treated with oral progesterone at the end of each menstrual cycle to restore menstrual cycles. Hypoactive sexual desire disorder (HSDD) is the most common sexual problem reported by women with diabetes and CKD. Sexual function can be assessed in women, using the 9-item Female Sexual Function Index, questionnaire, or 19 items. It is important for nephrologists and physicians to incorporate assessment of sexual function into the routine evaluation protocols.
Collapse
Affiliation(s)
- Ersilia Satta
- Department of Internal Medicine, Unit of Nephrology and Dialysis, University of Messina, 98100 Messina, Italy
- Dialysis Center, “Dialnefro”, Clinica Mariarosaria, 80045 Pompei, Italy
- *Ersilia Satta:
| | - Carlo Magno
- Department of Urology, University of Messina, 98100 Messina, Italy
| | - Alessandro Galì
- Department of Urology, University of Messina, 98100 Messina, Italy
| | | | - Roberta Granese
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, 98100 Messina, Italy
| | - Carmela Aloisi
- Department of Internal Medicine, Unit of Nephrology and Dialysis, University of Messina, 98100 Messina, Italy
| | - Michele Buemi
- Department of Internal Medicine, Unit of Nephrology and Dialysis, University of Messina, 98100 Messina, Italy
| | - Guido Bellinghieri
- Department of Internal Medicine, Unit of Nephrology and Dialysis, University of Messina, 98100 Messina, Italy
| | - Domenico Santoro
- Department of Internal Medicine, Unit of Nephrology and Dialysis, University of Messina, 98100 Messina, Italy
| |
Collapse
|
38
|
Abstract
In recent years, the interest in studying the impact of sex steroids and gender on the regulation of blood pressure and cardiovascular disease has been growing. Women are protected from most cardiovascular events compared with men until after menopause, and postmenopausal women are at increased risk of cardiovascular complications compared with premenopausal women. The pathophysiological mechanisms have not been elucidated, but are not likely to be as simple as the presence or absence of oestrogens, since hormone replacement therapy in elderly women in the Women's Health Initiative or HERS (Heart and Estrogen/progestin Replacement Study) did not provide primary or secondary prevention against cardiovascular events. Men are also thought to be at risk of cardiovascular disease at earlier ages than women, and these mechanisms too are not likely to be as simple as the presence of testosterone, since androgen levels fall in men with cardiovascular and other chronic diseases. In fact, many investigators now believe that it is the reduction in androgen levels that frequently accompanies chronic disease and may exacerbate cardiovascular disease in men. In the present review, the roles of sex steroids and gender in mediating or protecting against hypertension and cardiovascular disease will be discussed.
Collapse
Affiliation(s)
- Rodrigo Maranon
- Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | |
Collapse
|
39
|
Whitney JL, Bilkan CM, Sandberg K, Myers AK, Mulroney SE. Growth hormone exacerbates diabetic renal damage in male but not female rats. Biol Sex Differ 2013; 4:12. [PMID: 23805912 PMCID: PMC3698039 DOI: 10.1186/2042-6410-4-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Human and animal studies support the idea that there are sex differences in the development of diabetic renal disease. Our lab and others have determined that in addition to Ang II (through the AT1R), growth hormone (GH) contributes to renal damage in models of renal failure; however, the impact of sex and GH on the mechanisms initiating diabetic renal disease is not known. This study examined the effect of sex and GH on parameters of renal damage in early, uncontrolled streptozotocin (STZ)-induced diabetes. METHODS Adult male and female Sprague-Dawley rats were injected with vehicle (control), STZ, or STZ + GH and euthanized after 8 weeks. RESULTS Mild but significant glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) was observed in both kidneys from male and female diabetic rats, with GH significantly increasing GS and TIF by 30% and 25% in male rats, but not in female rats. STZ increased TGF-β expression in both kidneys from male and female rats; however, while GH had no further effect on TGF-β protein in diabetic females, GH increased TGF-β protein in the male rat's kidneys by an additional 30%. This sex-specific increase in renal injury following GH treatment was marked by increased MCP-1 and CD-68+ cell density. STZ also reduced renal MMP-2 and MMP-9 protein expression in both kidneys from male and female rats, but additional decreases were only observed in GH-treated diabetic male rats. The sex differences were independent of AT1R activity. CONCLUSIONS These studies indicate that GH affects renal injury in diabetes in a sex-specific manner and is associated with an increase in pro-inflammatory mediators.
Collapse
Affiliation(s)
- Jennifer L Whitney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
| | - Christine Maric Bilkan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn Sandberg
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Adam K Myers
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Susan E Mulroney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
40
|
Selective estrogen receptor modulation attenuates proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. Kidney Int 2013; 83:662-73. [DOI: 10.1038/ki.2012.475] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Reverte V, Tapia A, Baile G, Gambini J, Gíménez I, Llinas MT, Salazar FJ. Role of angiotensin II in arterial pressure and renal hemodynamics in rats with altered renal development: age- and sex-dependent differences. Am J Physiol Renal Physiol 2012; 304:F33-40. [PMID: 23097470 DOI: 10.1152/ajprenal.00424.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have demonstrated that angiotensin II (ANG II) is involved in hypertension and renal changes occurring as a consequence of an adverse event during renal development. However, it was unknown whether this involvement is sex and age dependent. This study examines whether the increments in arterial pressure (AP) and in the renal sensitivity to ANG II are sex and age dependent in rats with altered renal development. It also evaluates whether the ANG II effects are accompanied by increments in AT(1) receptors and oxidative stress. Experiments were performed in 3- to 4- and 10- to 11-mo-old rats treated with vehicle or an AT(1) receptor antagonist (ARAnp) during the nephrogenic period. ARAnp-treated rats were hypertensive, but an age-dependent rise in AP was only found in males. Three days of treatment with candesartan (7 mg·kg(-1)·day(-1)) led to a fall of AP that was greater (P < 0.05) in male than in female 10- to 11-mo-old ARAnp-treated rats. Oxidated proteins were elevated (P < 0.05), and the decrease in AP elicited by candesartan was reduced (P < 0.05) when these rats are also treated with tempol (18 mg·kg(-1)·day(-1)). Hypertension was not maintained by an elevation of AT(1) receptors in kidneys and mesenteric arteries. The acute renal hemodynamic response to ANG II (30 ng·kg(-1)·min(-1)) was similarly enhanced (P < 0.05) in both sexes of ARAnp-treated rats at 3-4 but not at 10-11 mo of age. Our results suggest that an adverse event during the nephrogenic period induces an ANG II-dependent increment in AP that is aggravated only in males during aging and that oxidative stress but not an increase in AT(1) receptor contributes to the rise in AP. This study also shows that the renal hemodynamic sensitivity to ANG II is transitorily enhanced in both sexes of rats with altered renal development.
Collapse
Affiliation(s)
- Virginia Reverte
- Dept. of Physiology, School of Medicine, Univ. of Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. ACTA ACUST UNITED AC 2012; 9:207-18. [PMID: 22795463 DOI: 10.1016/j.genm.2012.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system contributes to hypertension by regulating sodium and water reabsorption throughout the nephron. Sex differences in the intrarenal components of the renin-angiotensin system have been involved in the greater incidence of high blood pressure and progression to kidney damage in males than females. OBJECTIVE This study investigated whether there is a sex difference in the intrarenal gene expression and urinary excretion of angiotensinogen (AGT) during angiotensin II (Ang II)-dependent hypertension and high-salt (HS) diet. METHODS Male and female Sprague-Dawley rats were divided into 5 groups for each sex: Normal-salt control, HS diet (8% NaCl), Ang II-infused (80 ng/min), Ang II-infused plus HS diet, and Ang II-infused plus HS diet and treatment with the Ang II receptor blocker, candesartan (25 mg/L in the drinking water). Rats were evaluated for systolic blood pressure (SBP), kidney AGT mRNA expression, urinary AGT excretion, and proteinuria at different time points during a 14-day protocol. RESULTS Both male and female rats exhibited similar increases in urinary AGT, with increases in SBP during chronic Ang II infusion. HS diet greatly exacerbated the urinary AGT excretion in Ang II-infused rats; males had a 9-fold increase over Ang II alone and females had a 2.5-fold increase. Male rats displayed salt-sensitive SBP increases during Ang II infusion and HS diet, and female rats did not. In the kidney cortex, males displayed greater AGT gene expression than females during all treatments. During Ang II infusion, both sexes exhibited increases in AGT gene message compared with same-sex controls. In addition, HS diet combined with Ang II infusion exacerbated the proteinuria in both sexes. Concomitant Ang II receptor blocker treatment during Ang II infusion and HS diet decreased SBP and urinary AGT similarly in both sexes; however, the decrease in proteinuria was greater in the females. CONCLUSION During Ang II-dependent hypertension and HS diet, higher intrarenal renin-angiotensin system activation in males, as reflected by higher AGT gene expression and urinary excretion, indicates a mechanism for greater progression of high blood pressure and might explain the sex disparity in development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Vicky F Rands
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Men have higher blood pressure than women through much of life regardless of race and ethnicity. This is a robust and highly conserved sex difference that it is also observed across species including dogs, rats, mice and chickens and it is found in induced, genetic and transgenic animal models of hypertension. Not only do the differences between the ovarian and testicular hormonal milieu contribute to this sexual dimorphism in blood pressure, the sex chromosomes also play a role in and of themselves. This review primarily focuses on epidemiological studies of blood pressure in men and women and experimental models of hypertension in both sexes. Gaps in current knowledge regarding what underlie male-female differences in blood pressure control are discussed. Elucidating the mechanisms underlying sex differences in hypertension may lead to the development of anti-hypertensives tailored to one's sex and ultimately to improved therapeutic strategies for treating this disease and preventing its devastating consequences.
Collapse
Affiliation(s)
- Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Disease and Aging Georgetown University, Washington, DC 20057
| | - Hong Ji
- Center for the Study of Sex Differences in Health, Disease and Aging Georgetown University, Washington, DC 20057
| |
Collapse
|
44
|
Kang NN, Fu L, Xu J, Han Y, Cao JX, Sun JF, Zheng M. Testosterone improves cardiac function and alters angiotensin II receptors in isoproterenol-induced heart failure. Arch Cardiovasc Dis 2012; 105:68-76. [DOI: 10.1016/j.acvd.2011.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/26/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
|
45
|
Bhatia K, Elmarakby AA, El-Remessy AB, El-Remessey A, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R274-82. [PMID: 22049231 PMCID: PMC3349386 DOI: 10.1152/ajpregu.00546.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/31/2011] [Indexed: 12/20/2022]
Abstract
NADPH oxidase has been implicated in ANG II-induced oxidative stress and hypertension in males; however, the contribution of oxidative stress to ANG II hypertension in females is unknown. In the present study, we tested the hypothesis that greater antioxidant capacity in female spontaneously hypertensive rats (SHR) blunts ANG II-induced oxidative stress and hypertension relative to males. Whole body and renal cortical oxidative stress levels were assessed in female and male SHR left untreated or following 2 wk of chronic ANG II infusion. Chronic ANG II infusion increased NADPH oxidase enzymatic activity in the renal cortex of both sexes; however, this increase only reached significance in female SHR. In contrast, male SHR demonstrated a greater increase in all measurements of reactive oxygen species production in response to chronic ANG II infusion. ANG II infusion increased plasma superoxide dismutase activity only in female SHR (76 ± 9 vs. 190 ± 7 Units·ml(-1)·mg(-1), P < 0.05); however, cortical antioxidant capacity was unchanged by ANG II in either sex. To assess the functional implication of alterations in NADPH enzymatic activity and oxidative stress levels following ANG II infusion, additional experiments assessed the ability of the in vivo antioxidant apocynin to modulate ANG II hypertension. Apocynin significantly blunted ANG II hypertension in male SHR (174 ± 2 vs. 151 ± 1 mmHg, P < 0.05), with no effect in females (160 ± 11 vs. 163 ± 10 mmHg). These data suggest that ANG II hypertension in male SHR is more dependent on increases in oxidative stress than in female SHR.
Collapse
Affiliation(s)
- Kanchan Bhatia
- Department of Medicine, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
46
|
Yanes LL, Romero DG, Iliescu R, Reckelhoff JF. A single pill to treat postmenopausal hypertension? Not yet. Curr Top Med Chem 2011; 11:1736-41. [PMID: 21463249 DOI: 10.2174/156802611796117667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 08/14/2010] [Indexed: 11/22/2022]
Abstract
Postmenopausal women make up one of the fastest growing populations in the United States. Women typically have a higher incidence of cardiovascular disease following menopause. One of the major risk factors for cardiovascular disease is hypertension, and after menopause, blood pressure (BP) increases progressively in women. Also after menopause, the progression of renal disease increases in women compared with aged matched men. However, the mechanism(s) responsible for the post-menopausal increase in BP and renal injury are yet to be elucidated. Moreover the best therapeutic options to treat postmenopausal hypertension in women are not clear. Hypertension in postmenopausal women are usually associated with other cardiovascular risk factors, such as dyslipidemias, visceral obesity and endothelial dysfunction. Recently it became apparent that in a large number of hypertensive postmenopausal women, their BP is not well controlled with conventional antihypertensive medications. A clear understanding of the complex pathogenesis of postmenopausal hypertension is needed in order to offer the best therapeutic options for these women.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
47
|
Sampson AK, Hilliard LM, Moritz KM, Thomas MC, Tikellis C, Widdop RE, Denton KM. The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. Am J Physiol Regul Integr Comp Physiol 2011; 302:R159-65. [PMID: 22031787 DOI: 10.1152/ajpregu.00256.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex role of the renin-angiotensin-system (RAS) in arterial pressure regulation has been well documented. Recently, we demonstrated that chronic low-dose angiotensin II (ANG II) infusion decreases arterial pressure in female rats via an AT(2)R-mediated mechanism. Estrogen can differentially regulate components of the RAS and is known to influence arterial pressure regulation. We hypothesized that AT(2)R-mediated depressor effects evident in females were estrogen dependent and thus would be abolished by ovariectomy and restored by estrogen replacement. Female Sprague-Dawley rats underwent ovariectomy or sham surgery and were treated with 17β-estradiol or placebo. Mean arterial pressure (MAP) was measured via telemetry in response to a 2-wk infusion of ANG II (50 ng·kg(-1)·min(-1) sc) or saline. MAP significantly decreased in females treated with ANG II (-10 ± 2 mmHg), a response that was abolished by ovariectomy (+4 ± 2 mmHg) and restored with estrogen replacement (-6 ± 2 mmHg). Cardiac and renal gene expression of components of the RAS was differentially regulated by estrogen, such that overall, estrogen shifted the balance of the RAS toward the vasodilatory axis. In conclusion, estrogen-dependent mechanisms offset the vasopressor actions of ANG II by enhancing RAS vasodilator pathways in females. This highlights the potential for these vasodilator pathways as therapeutic targets, particularly in women.
Collapse
Affiliation(s)
- Amanda K Sampson
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ciliberti A, Berny P, Delignette-Muller ML, de Buffrénil V. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4735-4745. [PMID: 21885092 DOI: 10.1016/j.scitotenv.2011.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/02/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Wetland pollution is a matter of concern in sub-Saharan Africa. Though regularly exploited, the Nile monitor (Varanus niloticus), a large amphibious lizard, is not threatened. This work aims at assessing the value of this varanid as a sentinel species in surveys of environmental contamination by metals. Lead and cadmium quantifications were performed by graphite furnace-atomic absorption spectrophotometry in bone, intestine, kidney, liver and muscle in 71 monitors from three unevenly polluted sites in Mali and Niger, plus a reference site. The effects of sex, size and fat reserves as well as factors related to the sampling strategy (tissue sampled, sampling site) were studied with a mixed linear model. Metal contamination is moderate at the four sites but clear differences nevertheless occur. Lead levels are generally maximal in bone, with a gender-independent median value 320ng.g(-1). Median cadmium concentrations never exceed 70.2ng.g(-1) in females (kidney) and 57.5ng.g(-1) in males (intestine). Such levels should have no detrimental effects on the monitors. Lead and cadmium levels in muscles are generally below 200 and 20ng.g(-1), respectively, and should provoke no health hazard to occasional consumers of monitor meat. Metal organotropisms are consistent with those observed in other studies about Squamates: for lead: bone>[kidney, intestine, liver]>muscle in males and [bone, kidney]>[intestine, liver]>muscle in females; for cadmium: [liver, intestine, kidney]>[bone, muscle] for both genders. Females are more contaminated, especially in their kidneys. In this tissue, median values in ng.g(-1) are 129.7 and 344.0 for lead and 43.0 and 70.2 for cadmium, for males and females, respectively. Nile monitors can reveal subtle differences in local pollution by metals; moreover, the spatial resolution of the pollution indication that they give seems to be very sharp. The practical relevance of this new tool is thus validated.
Collapse
|
49
|
Gava AL, Freitas FPS, Meyrelles SS, Silva IV, Graceli JB. Gender-dependent effects of aging on the kidney. Braz J Med Biol Res 2011; 44:905-13. [PMID: 21956533 DOI: 10.1590/s0100-879x2011007500101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022] Open
Abstract
It is well known that the kidney plays an important role in the development of cardiovascular diseases such as hypertension. The normal aging process leads to changes in kidney morphology, hemodynamics and function, which increase the incidence of cardiovascular events in the elderly population. These disturbances are influenced by several factors, including gender. In general, females are protected by the effects of estrogens on the cardiorenal system. Several studies have demonstrated the beneficial effects of estrogens on renal function in the elderly; however, the relationships between androgens and kidney health during one's lifetime are not well understood. Sex steroids have many complex actions, and the decline in their levels during aging clearly influences kidney function, decreases the renal reserve and facilitates the development of cardiovascular disorders. Therefore, in this review, we discuss the cellular, biochemical, and molecular mechanisms by which sex hormones may influence renal function during the aging process.
Collapse
Affiliation(s)
- A L Gava
- Laboratório de Transgenes e Controle Cardiovascular, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | | | | | | |
Collapse
|
50
|
The effect of renin angiotensin system on tamoxifen resistance. Med Hypotheses 2011; 77:152-5. [DOI: 10.1016/j.mehy.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/25/2011] [Accepted: 04/04/2011] [Indexed: 01/04/2023]
|