1
|
Zero AM, Paris MT, Rice CL. Frequency dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors. J Appl Physiol (1985) 2022; 133:490-505. [PMID: 35796610 DOI: 10.1152/japplphysiol.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose was to investigate whether post-activation potentiation (PAP) mitigates power (i.e., torque x angular velocity) loss during dynamic fatiguing contractions and subsequent recovery by enhancing either muscle torque or angular velocity in human plantar flexors. In 12 participants, electrically stimulated (1, 10 and 50 Hz) dynamic contractions were done during a voluntary isotonic fatiguing protocol (20 and 50% voluntary decreases) until a 75% loss in voluntary peak power, and throughout 30 minutes of recovery. At the initial portion of fatigue (20% decrease), power responses of evoked low frequencies (1 and 10 Hz) were enhanced due to PAP (156 and 137%, respectively, P<0.001), while voluntary maximal efforts were depressed due to fatiguing mechanisms. Following the fatiguing task, prolonged low-frequency force depression (PLFFD) was evident by reduced 10:50 Hz peak power ratios (21 - 24%) from 3-min onwards during the 30-min recovery (P<0.005). Inducing PAP with maximal voluntary contractions during PLFFD enhanced the peak power responses of low frequencies (1 and 10 Hz) by 128 - 160 %, P<0.01. This PAP response mitigated the effects of PLFFD as the 1:50 (P<0.05) and 10:50 (P>0.4) Hz peak power ratios were greater or not different from the pre-fatigue values. Additionally, PAP enhanced peak torque more than peak angular velocity during both baseline and fatigue measurements (P<0.03). These results indicate that PAP can ameliorate PLFFD acutely when evaluated during concentric isotonic contractions and that peak torque is enhanced to a greater degree compared to peak angular velocity at baseline and in a fatigued state.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, grid.443228.bWestern University, London, Ontario, Canada
| |
Collapse
|
2
|
Rahman MA, Ušaj M, Rassier DE, Månsson A. Blebbistatin Effects Expose Hidden Secrets in the Force-Generating Cycle of Actin and Myosin. Biophys J 2019; 115:386-397. [PMID: 30021113 PMCID: PMC6050972 DOI: 10.1016/j.bpj.2018.05.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Cyclic interactions between myosin II motors and actin filaments driven by ATP turnover underlie muscle contraction and have key roles in the motility of nonmuscle cells. A remaining enigma in the understanding of this interaction is the relationship between the force-generating structural change and the release of the ATP-hydrolysis product, inorganic phosphate (Pi), from the active site of myosin. Here, we use the small molecular compound blebbistatin to probe otherwise hidden states and transitions in this process. Different hypotheses for the Pi release mechanism are tested by interpreting experimental results from in vitro motility assays and isolated muscle fibers in terms of mechanokinetic actomyosin models. The data fit with ideas that actomyosin force generation is preceded by Pi release, which in turn is preceded by two serial transitions after/coincident with cross-bridge attachment. Blebbistatin changes the rate limitation of the cycle from the first to the second of these transitions, uncovering functional roles of an otherwise short-lived pre-power stroke state that has been implicated by structural data.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
3
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
4
|
Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil 2013; 34:317-32. [PMID: 24162313 DOI: 10.1007/s10974-013-9363-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/21/2023]
Abstract
The contractile performance of mammalian fast twitch skeletal muscle is history dependent. The effect of previous or ongoing contractile activity to potentiate force, i.e. increase isometric twitch force, is a fundamental property of fast skeletal muscle. The precise manifestation of force potentiation is dependent upon a variety of factors with two general types being identified; staircase potentiation referring to the progressive increase in isometric twitch force observed during low frequency stimulation while posttetanic potentiation refers to the step-like increase in isometric twitch force observed following a brief higher frequency (i.e. tetanic) stimulation. Classic studies established that the magnitude and duration of potentiation depends on a number of factors including muscle fiber type, species, temperature, sarcomere length and stimulation paradigm. In addition to isometric twitch force, more recent work has shown that potentiation also influences dynamic (i.e. concentric and/or isotonic) force, work and power at a range of stimulus frequencies in situ or in vitro, an effect that may translate to enhanced physiological function in vivo. Early studies performed on both intact and permeabilized models established that the primary mechanism for this modulation of performance was phosphorylation of myosin, a modification that increased the Ca(2+) sensitivity of contraction. More recent work from a variety of muscle models indicates, however, the presence of a secondary mechanism for potentiation that may involve altered Ca(2+) handling. The primary purpose of this review is to highlight these recent findings relative to the physiological utility of force potentiation in vivo.
Collapse
|
5
|
Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2011; 2:215-25. [PMID: 22031844 PMCID: PMC3202125 DOI: 10.4331/wjbc.v2.i10.215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 02/05/2023] Open
Abstract
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.
Collapse
|
6
|
Stull JT, Kamm KE, Vandenboom R. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 2011; 510:120-8. [PMID: 21284933 PMCID: PMC3101293 DOI: 10.1016/j.abb.2011.01.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca(2+)/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca(2+) binding to calmodulin forming a (Ca(2+))(4)•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca(2+) results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca(2+)/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca(2+)-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.
Collapse
Affiliation(s)
- James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, 75390-9040, USA.
| | | | | |
Collapse
|
7
|
Greenberg MJ, Mealy TR, Jones M, Szczesna-Cordary D, Moore JR. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus. Am J Physiol Regul Integr Comp Physiol 2010; 298:R989-96. [PMID: 20089714 DOI: 10.1152/ajpregu.00566.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RLC). Here, we measured the direct molecular effects of fatigue-like conditions on actomyosin's unloaded sliding velocity using the in vitro motility assay. We examined how changes in ATP, ADP, P(i), and pH affect the ability of the myosin to translocate actin and whether the effects of each individual molecular species are additive. We found that the primary causes of the reduction in unloaded sliding velocity are increased [ADP] and lowered pH and that the combined effects of the molecular species are nonadditive. Furthermore, since an increase in RLC phosphorylation is often associated with fatigue, we examined the differential effects of myosin RLC phosphorylation and fatigue on actin filament velocity. We found that phosphorylation of the RLC causes a 22% depression in sliding velocity. On the other hand, RLC phosphorylation ameliorates the slowing of velocity under fatigue-like conditions. We also found that phosphorylation of the myosin RLC increases actomyosin affinity for ADP, suggesting a kinetic role for RLC phosphorylation. Furthermore, we showed that ADP binding to skeletal muscle is load dependent, consistent with the existence of a load-dependent isomerization of the ADP bound state.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, L-720, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
8
|
Cellular and whole muscle studies of activity dependent potentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:315-42. [PMID: 20824534 DOI: 10.1007/978-1-4419-6366-6_18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
With a single activation, a skeletal muscle fiber, motor unit or whole muscle will yield a twitch contraction. The twitch is not an "all-or-none" response, but a submaximal response that can vary from one time to another. Prior activation causes myosin regulatory light chain (RLC) phosphorylation, by an enzyme called myosin light chain kinase. This phosphorylation dissipates slowly over the next several minutes due to a slow activity of light chain phosphatase. Phosphorylation of the RLC increases the mobility of the S1 head of myosin, bringing the S1 head in closer proximity to the myosin binding sites on actin. This increased mobility increases the rate of engagement of cross-bridges and increases the rate of force development and contraction magnitude on subsequent twitch or other submaximal contractions. We call this increased contractile response "activity dependent potentiation". With sequential twitches or incompletely fused tetanic contractions, the term staircase is used to describe the progressive increase in amplitude of contraction. If a twitch is elicited after a tetanic contraction, we call the enhanced response posttetanic potentiation. Stretching a muscle fiber to a longer length will also bring the actin filaments close to the myosin heads. This increases the Ca²(+) sensitivity, independent of RLC phosphorylation. At long sarcomere lengths, the impact of RLC phosphorylation is diminished, because Ca²(+) sensitivity is already increased. Similarly, lowering the temperature at which the muscle is tested increases Ca²(+) sensitivity. At low temperatures, staircase and posttetanic potentiation are diminished, but RLC phosphorylation still occurs. Activity dependent potentiation is an important functional modulator of contractile response.
Collapse
|
9
|
Cheng AJ, Rice CL. Isometric torque and shortening velocity following fatigue and recovery of different voluntary tasks in the dorsiflexors. Appl Physiol Nutr Metab 2009; 34:866-74. [DOI: 10.1139/h09-085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to compare the relative influence of various fatigue-related factors involved in isometric and dynamic task failure following an equivalent decrease in isometric maximum voluntary contraction (MVC) torque. Using a similar duty cycle (∼1-s contraction per 2 s) and contraction load (50% of MVC), 9 young males performed in the dorsiflexors a dynamic task, and on a separate occasion an intermittent isometric task, to an equal decrease in isometric MVC torque. Dynamic contractions had greater motor unit activation and maximum rate of torque development, and required fewer contractions to task failure than the isometric task, indicating a faster development of fatigue during the velocity-dependent dynamic contractions. Peripheral factors, rather than impairments in voluntary drive, were responsible for the equivalent decrease in MVC torque at task failure and its subsequent incomplete recovery. These included, for both tasks, similar changes during fatigue and recovery in voluntary isometric MVC torque, shortening velocity, stimulated twitch and 50 Hz torque, and 50 Hz maximum rate of relaxation. Irrespective of the task, however, the greater reduction in shortening velocity at task failure and its subsequent faster recovery than MVC torque suggest that changes in metabolites affect velocity to a greater extent than isometric torque.
Collapse
Affiliation(s)
- Arthur J. Cheng
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
- School of Kinesiology and Department of Anatomy and Cell Biology, The University of Western Ontario, London ON N6A 3K7, Canada
| | - Charles L. Rice
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
- School of Kinesiology and Department of Anatomy and Cell Biology, The University of Western Ontario, London ON N6A 3K7, Canada
| |
Collapse
|
10
|
Greenberg MJ, Mealy TR, Watt JD, Jones M, Szczesna-Cordary D, Moore JR. The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation. Am J Physiol Regul Integr Comp Physiol 2009; 297:R265-74. [PMID: 19458282 DOI: 10.1152/ajpregu.00171.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the myosin regulatory light chain (RLC) in skeletal muscle has been proposed to act as a molecular memory of recent activation by increasing the rate of force development, ATPase activity, and isometric force at submaximal activation in fibers. It has been proposed that these effects stem from phosphorylation-induced movement of myosin heads away from the thick filament backbone. In this study, we examined the molecular effects of skeletal muscle myosin RLC phosphorylation using in vitro motility assays. We showed that, independently of the thick filament backbone, the velocity of skeletal muscle myosin is decreased upon phosphorylation due to an increase in the myosin duty cycle. Furthermore, we did not observe a phosphorylation-dependent shift in calcium sensitivity in the absence of the myosin thick filament. These data suggest that phosphorylation-induced movement of myosin heads away from the thick filament backbone explains only part of the observed phosphorylation-induced changes in myosin mechanics. Last, we showed that the duty cycle of skeletal muscle myosin is strain dependent, consistent with the notion that strain slows the rate of ADP release in striated muscle.
Collapse
Affiliation(s)
- Michael J Greenberg
- Dept. of Physiology and Biophysics, Boston Univ. School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
11
|
Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin. J Muscle Res Cell Motil 2009; 30:17-27. [PMID: 19125340 DOI: 10.1007/s10974-008-9162-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Phosphorylation of skeletal myosin regulatory light chain (RLC) occurs in fatigue and may play a role in the inhibition of shortening velocities observed in vivo. Forces and shortening velocities were measured in permeabilized rabbit psoas fibers with either phosphorylated or dephosphorylated RLCs and in the presence or absence of the myosin inhibitor blebbistatin. Addition of 20 microM blebbistatin decreased tensions by approximately 80% in fibers, independent of phosphorylation. In blebbistatin maximal shortening velocities (V(max)) at 30 degrees C, were decreased by 45% (3.2 +/- 0.34 vs. 5.8 +/- 0.18 lengths/s) in phosphorylated fibers but were not inhibited in dephosphorylated fibers (6.0 +/- 0.30 vs. 5.4 +/- 0.30). In the presence of 20 microM blebbistatin, K(m) for V(max) as a function of [ATP] was lower for phosphorylated fibers than for dephosphorylated fibers (50 +/- 20 vs. 330 +/- 84 microM) indicating that the apparent binding of ATP is stronger in these fibers. Phosphorylation of RLC in situ during fiber preparation or by addition of myosin light chain kinase yielded similar data. RLC phosphorylation inhibited velocity in blebbistatin at both 30 and 10 degrees C, unlike previous reports where RLC phosphorylation only affected shortening velocities at higher temperatures.
Collapse
|
12
|
Abstract
Fatigue of skeletal muscle involves many systems beginning with the central nervous system and ending with the contractile machinery. This review concentrates on those factors that directly affect the actomyosin interaction: the build-up of metabolites; myosin phosphorylation; and oxidation of the myofibrillar proteins by free radicals. The decrease in [ATP] and increase in [ADP] appear to play little role in modulating function. The increase in phosphate inhibits tension. The decrease in pH, long thought to be a major factor, is now known to play a more minor role. Myosin phosphorylation potentiates the force achieved in a twitch, and a further role in inhibiting velocity is proposed. Protein oxidation can both potentiate and inhibit the actomyosin interaction. It is concluded that these factors, taken together, do not fully explain the inhibition of the actomyosin interaction observed in living fibers, and thus additional modulators of this interaction remain to be discovered.
Collapse
Affiliation(s)
- Roger Cooke
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, California 94158-2517, USA.
| |
Collapse
|
13
|
Abstract
The functional correlates of fatigue observed in both animals and humans during exercise include a decline in peak force (P0), maximal velocity, and peak power. Establishing the extent to which these deleterious functional changes result from direct effects on the myofilaments is facilitated through understanding the molecular mechanisms of the cross-bridge cycle. With actin-myosin binding, the cross-bridge transitions from a weakly bound low-force state to a strongly bound high-force state. Low pH reduces the number of high-force cross bridges in fast fibers, and the force per cross bridge in both fast and slow fibers. The former is thought to involve a direct inhibition of the forward rate constant for transition to the strong cross-bridge state. In contrast, inorganic phosphate (Pi) is thought to reduce P0 by accelerating the reversal of this step. Both H+ and Pi decrease myofibrillar Ca2+ sensitivity. This effect is particularly important as the amplitude of the Ca2+ transient falls with fatigue. The inhibitory effects of low pH and high Pi on P0 are reduced as temperature increases from 10 to 30 degrees C. However, the H+-induced depression of peak power in the slow fiber type, and Pi inhibition of myofibrillar Ca2+ sensitivity in slow and fast fibers, are greater at high compared with low temperature. Thus the depressive effects of H+ and Pi at in vivo temperatures cannot easily be predicted from data collected below 25 degrees C. In vitro, reactive oxygen species reduce myofibrillar Ca2+ sensitivity; however, the importance of this mechanism during in vivo exercise is unknown.
Collapse
Affiliation(s)
- Robert H Fitts
- Dept. of Biological Sciences, Wehr Life Sciences Bldg., Marquette Univ., P. O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
14
|
Karatzaferi C, Franks-Skiba K, Cooke R. Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue. Am J Physiol Regul Integr Comp Physiol 2007; 294:R948-55. [PMID: 18077511 DOI: 10.1152/ajpregu.00541.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms responsible for the inhibition of shortening velocity that occurs during muscle fatigue have not been completely elucidated. Phosphorylation of the myosin regulatory light chain (RLC) occurs during heavy use; however, previous reports on its role in affecting velocity have been equivocal. To further understand the process of fatigue, we varied the levels of myosin RLC phosphorylation (from 10 to >50%) and the concentrations of protons (from pH 7 to 6.2) and phosphate (from 5 to 30 mM), all of which change during fatigue. We measured the mechanics of permeable rabbit psoas fibers at a temperature closer to physiological (30 degrees C), using a temperature jump protocol to briefly activate the fibers at the higher temperature to preserve sarcomere homogeneity. Although lowered pH alone had an effect on velocity, it was the three factors together, i.e., high phosphorylation, low pH, and high phosphate, that acted synergistically to inhibit fiber velocity by approximately 40%. Our data demonstrate that in conditions that simulate physiological muscle fatigue, myosin phosphorylation does contribute to the inhibition of contraction velocity of fully activated fast muscle fibers.
Collapse
Affiliation(s)
- Christina Karatzaferi
- Institute of Human Performance and Rehabilitation, Center for Research and Technology Thessaly, University of Thessaly, Trikala, Greece
| | | | | |
Collapse
|