1
|
Felipo-Benavent M, Valls M, Monteiro MC, Jávega B, García-Párraga D, Rubio-Guerri C, Martínez-Romero A, O’Connor JE. Platelet phosphatidylserine exposure and microparticle production as health bioindicators in marine mammals. Front Vet Sci 2024; 11:1393977. [PMID: 38799726 PMCID: PMC11117335 DOI: 10.3389/fvets.2024.1393977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
In human medicine, various pathologies, including decompression sickness, thrombocytopenia, and rheumatoid arthritis, have been linked to changes in cellular microparticles (MP) formation, particularly platelet microparticles (PMP). Similar disorders in marine mammals might be attributed to anthropogenic threats or illnesses, potentially impacting blood PMP levels. Thus, detecting platelet phosphatidylserine (PS) exposure and PMP formation could serve as a crucial diagnostic and monitoring approach for these conditions in marine mammals. Our group has developed a methodology to assess real-time PS exposure and PMP formation specifically tailored for marine mammals. This method, pioneered in species such as bottlenose dolphins, beluga whales, walruses, and California sea lions, represents a novel approach with significant implications for both clinical assessment and further research into platelet function in these animals. The adapted methodology for evaluating PS exposure and PMP formation in marine mammals has yielded promising results. By applying this approach, we have observed significant correlations between alterations in PMP levels and specific pathologies or environmental factors. These findings underscore the potential of platelet function assessment as a diagnostic and monitoring tool in marine mammal health. The successful adaptation and application of this methodology in marine mammals highlight its utility for understanding and managing health concerns in these animals.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Mónica Valls
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Maria Céu Monteiro
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Daniel García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
| | - Consuelo Rubio-Guerri
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Thompson LA, Hindle AG, Black SR, Romano TA. Variation in the hemostatic complement (C5a) responses to in vitro nitrogen bubbles in monodontids and phocids. J Comp Physiol B 2020; 190:811-822. [PMID: 32815023 DOI: 10.1007/s00360-020-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.
Collapse
Affiliation(s)
- Laura A Thompson
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA.
| | | | | | - Tracy A Romano
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA
| |
Collapse
|
3
|
Allometric scaling of decompression sickness risk in terrestrial mammals; cardiac output explains risk of decompression sickness. Sci Rep 2017; 7:40918. [PMID: 28150725 PMCID: PMC5288729 DOI: 10.1038/srep40918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
A probabilistic model was used to predict decompression sickness (DCS) outcome in pig (70 and 20 kg), hamster (100 g), rat (220 g) and mouse (20 g) following air saturation dives. The data set included 179 pig, 200 hamster, 360 rat, and 224 mouse exposures to saturation pressures ranging from 1.9–15.2 ATA and with varying decompression rates (0.9–156 ATA • min−1). Single exponential kinetics described the tissue partial pressures (Ptiss) of N2: Ptiss = ∫(Pamb – Ptiss) • τ−1 dt, where Pamb is ambient N2 pressure and τ is a time constant. The probability of DCS [P(DCS)] was predicted from the risk function: P(DCS) = 1−e−r, where r = ∫(PtissN2 − Thr − Pamb) • Pamb–1 dt, and Thr is a threshold parameter. An equation that scaled τ with body mass included a constant (c) and an allometric scaling parameter (n), and the best model included n, Thr, and two c. The final model provided accurate predictions for 58 out of 61 dive profiles for pig, hamster, rat, and mouse. Thus, body mass helped improve the prediction of DCS risk in four mammalian species over a body mass range covering 3 orders of magnitude.
Collapse
|
4
|
Rosen DAS, Hindle AG, Gerlinsky CD, Goundie E, Hastie GD, Volpov BL, Trites AW. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean. J Comp Physiol B 2016; 187:29-50. [PMID: 27686668 DOI: 10.1007/s00360-016-1035-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/26/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.
Collapse
Affiliation(s)
- David A S Rosen
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Allyson G Hindle
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Carling D Gerlinsky
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Elizabeth Goundie
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Gordon D Hastie
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Beth L Volpov
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew W Trites
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|