1
|
Ahmed U, Chang YC, Lopez MF, Wong J, Datta-Chaudhuri T, Rieth L, Al-Abed Y, Zanos S. Implant- and anesthesia-related factors affecting cardiopulmonary threshold intensities for vagus nerve stimulation. J Neural Eng 2021; 18. [PMID: 34036940 DOI: 10.1088/1741-2552/ac048a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is typically delivered at increasing stimulus intensity until a neurological or physiological response is observed ('threshold') for dose calibration, preclinically and therapeutically. Factors affecting VNS thresholds have not been studied systematically. In a rodent model of VNS we measured neural and physiological responses to increasing VNS intensity, determined neurological and physiological thresholds and examined the effect of implant- and anesthesia-related factors on thresholds.Approach.In acute and chronic vagus implants (45 and 20 rats, respectively) VNS was delivered under isoflurane, ketamine-xylazine, or awake conditions. Evoked compound action potentials (CAPs) were recorded and activation of different fiber types was extracted. Elicited physiological responses were registered, including changes in heart rate (HR), breathing rate (BR), and blood pressure (BP). CAP and physiological thresholds were determined.Main results. The threshold for evoking discernable CAPs (>10µV) (CAP threshold) is significantly lower than what elicits 5%-10% drop in heart rate (heart rate threshold, HRT) (25µA ± 1.8 vs. 80µA ± 5.1, respectively; mean ± SEM). Changes in BP and small changes in BR (bradypnea) occur at lowest intensities (70µA ± 8.3), followed by HR changes (80µA ± 5.1) and finally significant changes in BR (apnea) (310μA ± 32.5). HRT and electrode impedance are correlated in chronic (Pearson correlationr= 0.47;p< 0.001) but not in acute implants (r= -0.34;pNS); HRT and impedance both increase with implant age (r= 0.44;p< 0.001 andr= 0.64;p< 0.001, respectively). HRT is lowest when animals are awake (200µA ± 35.5), followed by ketamine-xylazine (640µA ± 151.5), and isoflurane (1000µA ± 139.5). The sequence of physiological responses with increasing VNS intensity is the same in anesthetized and awake animals. Pulsing frequency affects physiological responses but not CAPs.Significance. Implant age, electrode impedance, and type of anesthesia affect VNS thresholds and should be accounted for when calibrating stimulation dose.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Jason Wong
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| |
Collapse
|
2
|
Kawada T, Mukkamala R, Sugimachi M. Linear and Nonlinear Analysis of the Carotid Sinus Baroreflex Dynamic Characteristics. ADVANCED BIOMEDICAL ENGINEERING 2019. [DOI: 10.14326/abe.8.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center
| | | | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center
| |
Collapse
|
3
|
Kawada T, Turner MJ, Shimizu S, Kamiya A, Shishido T, Sugimachi M. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve. Am J Physiol Regul Integr Comp Physiol 2017; 314:R459-R467. [PMID: 29118022 DOI: 10.1152/ajpregu.00328.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P < 0.01) and mean AP (98.4 ± 7.8 vs. 89.2 ± 4.5 mmHg, P < 0.01) during dynamic pressure perturbation. The ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Michael J Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toshiaki Shishido
- Department of Research Promotion, National Cerebral and Cardiovascular Center , Osaka , Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|