1
|
Arán-Tapia I, Pérez-Muñuzuri V, Muñuzuri AP, Soto-Varela A, Otero-Millan J, Roberts DC, Ward BK. Modeling of magnetic vestibular stimulation experienced during high-field clinical MRI. COMMUNICATIONS MEDICINE 2025; 5:27. [PMID: 39837985 PMCID: PMC11751175 DOI: 10.1038/s43856-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully. This study explores these effects and tests whether the Lorentz force hypothesis adequately explains magnetic vestibular stimulation. METHODS We developed a mathematical model integrating computational fluid dynamics, fluid-structure interaction solvers, and magnetohydrodynamic equations to simulate the biomechanical response of the cristae ampullares. Using high-resolution micro-CT data of the human membranous labyrinth, we ensured anatomical accuracy. Experimental validation involved measuring horizontal, vertical, and torsional slow-phase eye movements in healthy subjects exposed to varying magnetic field intensities and head positions. RESULTS Our model accurately replicates observed nystagmus patterns, predicting slow-phase eye velocities that match experimental data. Results indicate that Lorentz force-induced stimulation of individual cupulae explains variability in eye movements across different magnetic field intensities and head orientations. CONCLUSIONS This study empirically supports the Lorentz force hypothesis as a valid explanation for magnetic vestibular stimulation, offering new insights into the effects of high-field MRI on the vestibular system. These findings provide a foundation for future research and improved clinical practices.
Collapse
Affiliation(s)
- Ismael Arán-Tapia
- Group of Non-Linear Physics, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Galician Center for Mathematical Research and Technology (CITMAga), Santiago de Compostela, Spain.
- CRETUS Institute, Santiago de Compostela, Spain.
| | - Vicente Pérez-Muñuzuri
- Group of Non-Linear Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
- CRETUS Institute, Santiago de Compostela, Spain
| | - Alberto P Muñuzuri
- Group of Non-Linear Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology (CITMAga), Santiago de Compostela, Spain
| | - Andrés Soto-Varela
- Division of Neurotology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Dale C Roberts
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan K Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Bouisset N, Laakso I. Induced electric fields in MRI settings and electric vestibular stimulations: same vestibular effects? Exp Brain Res 2024; 242:2493-2507. [PMID: 39261353 DOI: 10.1007/s00221-024-06910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
In Magnetic Resonance Imaging scanner environments, the continuous Lorentz Force is a potent vestibular stimulation. It is nowadays so well known that it is now identified as Magnetic vestibular stimulation (MVS). Alongside MVS, some authors argue that through induced electric fields, electromagnetic induction could also trigger the vestibular system. Indeed, for decades, vestibular-specific electric stimulations (EVS) have been known to precisely impact all vestibular pathways. Here, we go through the literature, looking at potential time varying magnetic field induced vestibular outcomes in MRI settings and comparing them with EVS-known outcomes. To date, although theoretically induction could trigger vestibular responses the behavioral evidence remains poor. Finally, more vestibular-specific work is needed.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Bouisset N, Nissi J, Laakso I, Reynolds RF, Legros A. Is activation of the vestibular system by electromagnetic induction a possibility in an MRI context? Bioelectromagnetics 2024; 45:171-183. [PMID: 38348647 DOI: 10.1002/bem.22497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/16/2023] [Indexed: 04/17/2024]
Abstract
In recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo-ocular reflex. Other hypotheses have largely been discarded. Nonetheless, both human data and computational modeling suggest that electromagnetic induction could be a valid mechanism which may coexist alongside the Lorentz force. To further investigate the induction hypothesis, we provide, herein, a first of its kind dosimetric analysis to estimate the induced electric fields at the vestibular system and compare them with what galvanic vestibular stimulation would generate. We found that electric fields strengths from induction match galvanic vestibular stimulation strengths generating vestibular responses. This review examines the evidence in support of electromagnetic induction of vestibular responses, and whether movement-induced time-varying magnetic fields should be further considered and investigated.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Janita Nissi
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Raymond F Reynolds
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Legros
- Human Threshold Research Group, Lawson Health Research Institute, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Departments of Medical Biophysics and Medical Imaging Western University, London, Ontario, Canada
- Eurostim, Montpellier, France
| |
Collapse
|
4
|
Cote JM, Hood A, Kwon B, Smith JC, Houpt TA. Behavioral and neural responses to high-strength magnetic fields are reduced in otolith mutant mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R181-R192. [PMID: 37306398 PMCID: PMC10393321 DOI: 10.1152/ajpregu.00317.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Static high magnetic fields (MFs) interact with the vestibular system of humans and rodents. In rats and mice, exposure to MFs causes perturbations such as head movements, circular locomotion, suppressed rearing, nystagmus, and conditioned taste aversion acquisition. To test the role of otoconia, two mutant mouse models were examined, head-tilt Nox3het (het) and tilted Otop1 (tlt), with mutations, respectively, in Nox3, encoding the NADPH oxidase 3 enzyme, and Otop1, encoding the otopetrin 1 proton channel, which are normally expressed in the otolith organs, and are critical for otoconia formation. Consequently, both mutants show a near complete loss of otoconia in the utricle and saccule, and are nonresponsive to linear acceleration. Mice were exposed to a 14.1 Tesla MF for 30 min. After exposure, locomotor activity, conditioned taste aversion and c-Fos (in het) were assessed. Wild-type mice exposed to the MF showed suppressed rearing, increased latency to rear, locomotor circling, and c-Fos in brainstem nuclei related to vestibular processing (prepositus, spinal vestibular, and supragenual nuclei). Mutant het mice showed no response to the magnet and were similar to sham animals in all assays. Unlike het, tlt mutants exposed to the MF showed significant locomotor circling and suppressed rearing compared with sham controls, although they failed to acquire a taste aversion. The residual responsiveness of tlt versus het mice might reflect a greater semicircular deficit in het mice. These results demonstrate the necessity of the otoconia for the full effect of exposure to high MFs, but also suggest a semicircular contribution.
Collapse
Affiliation(s)
- Jason M Cote
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Alison Hood
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bumsup Kwon
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - James C Smith
- Department of Psychology, Florida State University, Tallahassee, Florida, United States
| | - Thomas A Houpt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
5
|
Lv Y, Fan Y, Tian X, Yu B, Song C, Feng C, Zhang L, Ji X, Zablotskii V, Zhang X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J Magn Reson Imaging 2021; 56:354-365. [PMID: 34921571 DOI: 10.1002/jmri.28035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MRI) has obvious advantages in acquiring high-resolution images. 7 T MRI has been clinically approved and 21.1 T MRI has also been tested on rodents. PURPOSE To examine the effects of ultra-high field on mice behavior and neuron activity. STUDY TYPE Prospective, animal model. ANIMAL MODEL Ninety-eight healthy C57BL/6 mice and 18 depression model mice. FIELD STRENGTH 11.1-33.0 T SMF (static magnetic field) for 1 hour and 7 T for 8 hours. Gradients were not on and no imaging sequence was used. ASSESSMENT Open field test, elevated plus maze, three-chambered social test, Morris water maze, tail suspension test, sucrose preference test, blood routine, biochemistry examinations, enzyme-linked immunosorbent assay, immunofluorescent assay. STATISTICAL TESTS The normality of the data was assessed by Shapiro-Wilk test, followed by Student's t test or the Mann-Whitney U test for statistical significance. The statistical cut-off line is P < 0.05. RESULTS Compared to the sham group, healthy C57/6 mice spent more time in the center area (35.12 ± 4.034, increased by 47.19%) in open field test and improved novel index (0.6201 ± 0.02522, increased by 16.76%) in three-chambered social test a few weeks after 1 hour 11.1-33.0 T SMF exposure. 7 T SMF exposure for 8 hours alleviated the depression state of depression mice, including less immobile time in tail suspension test (58.32% reduction) and higher sucrose preference (increased by 8.80%). Brain tissue analysis shows that 11.1-33.0 T and 7 T SMFs can increase oxytocin by 164.65% and 36.03%, respectively. Moreover, the c-Fos level in hippocampus region was increased by 14.79%. DATA CONCLUSION 11.1-33.0 T SMFs exposure for 1 hour or 7 T SMF exposure for 8 hours did not have detrimental effects on healthy or depressed mice. Instead, these ultra-high field SMFs have anti-depressive potentials. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yue Lv
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Vitalii Zablotskii
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,International Magnetobiology Frontier Research Center, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center, Hefei, China
| |
Collapse
|
6
|
Tkáč I, Benneyworth MA, Nichols-Meade T, Steuer EL, Larson SN, Metzger GJ, Uğurbil K. Long-term behavioral effects observed in mice chronically exposed to static ultra-high magnetic fields. Magn Reson Med 2021; 86:1544-1559. [PMID: 33821502 DOI: 10.1002/mrm.28799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The primary goal of this study was to investigate whether chronic exposures to ultra-high B0 fields can induce long-term cognitive, behavioral, or biological changes in C57BL/6 mice. METHODS C57BL/6 mice were chronically exposed to 10.5-T or 16.4-T magnetic fields (3-h exposures, two exposure sessions per week, 4 or 8 weeks of exposure). In vivo single-voxel 1 H magnetic resonance spectroscopy was used to investigate possible neurochemical changes in the hippocampus. In addition, a battery of behavioral tests, including the Morris water-maze, balance-beam, rotarod, and fear-conditioning tests, were used to examine long-term changes induced by B0 exposures. RESULTS Hippocampal neurochemical profile, cognitive, and basic motor functions were not impaired by chronic magnetic field exposures. However, the balance-beam-walking test and the Morris water-maze testing revealed B0 -induced changes in motor coordination and balance. The tight-circling locomotor behavior during Morris water-maze tests was found as the most sensitive factor indexing B0 -induced changes. Long-term behavioral changes were observed days or even weeks subsequent to the last B0 exposure at 16.4 T but not at 10.5 T. Fast motion of mice in and out of the 16.4-T magnet was not sufficient to induce such changes. CONCLUSION Observed results suggest that the chronic exposure to a magnetic field as high as 16.4 T may result in long-term impairment of the vestibular system in mice. Although observation of mice may not directly translate to humans, nevertheless, they indicate that studies focused on human safety at very high magnetic fields are necessary.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael A Benneyworth
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tessa Nichols-Meade
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth L Steuer
- N Bud Grossman Center for Memory Research & Care, Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah N Larson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Mouse Magnetic-field Nystagmus in Strong Static Magnetic Fields Is Dependent on the Presence of Nox3. Otol Neurotol 2019; 39:e1150-e1159. [PMID: 30444848 DOI: 10.1097/mao.0000000000002024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Magnetic vestibular stimulation (MVS) elicits nystagmus in C57BL/6J mice but not head tilt mice lacking Nox3, which is required for normal otoconial development. BACKGROUND Humans have vertigo and nystagmus in strong magnetic fields within magnetic resonance imaging machines. The hypothesized mechanism is a Lorentz force driven by electrical current entering the utricular neuroepithelium, acting indirectly on crista hair cells via endolymph movement deflecting cupulae. We tested an alternate hypothesized mechanism: Lorentz action directly on crista hair cell stereocilia, driven by their currents independent of the utricle. METHODS Before MVS, vestibulo-ocular reflex responses of eight C57BL/6J mice and six head tilt mice were measured during whole-body sinusoidal rotations and tilts using video-oculography. Mice were then placed within a 4.7 Tesla magnetic field with the horizontal semicircular canals approximately Earth-horizontal for ≥1 minute in several head orientations, while eye movements were recorded via infrared video in darkness. RESULTS Outside the magnet, both C57BL/6J and head tilt mice had intact horizontal vestibulo-ocular reflex, but only C57BL/6J mice exhibited static counter-roll responses to tilt (normal utiruclo-ocular reflex). When placed in the magnet nose-first, C57BL/6J mice had left-beating nystagmus, lasting a median of 32.8 seconds. When tail-first, nystagmus was right-beating and similar duration (median 28.0 s, p > 0.05). In contrast, head tilt mice lacked magnetic field-induced nystagmus (p < 0.001). CONCLUSIONS C57BL/6J mice generate nystagmus in response to MVS, while mice deficient in Nox3 do not. This suggests 1) a normal utricle is necessary, and 2) functioning semicircular canals are insufficient, to generate MVS-induced nystagmus in mice.
Collapse
|
8
|
Leong ATL, Gu Y, Chan YS, Zheng H, Dong CM, Chan RW, Wang X, Liu Y, Tan LH, Wu EX. Optogenetic fMRI interrogation of brain-wide central vestibular pathways. Proc Natl Acad Sci U S A 2019; 116:10122-10129. [PMID: 31028140 PMCID: PMC6525493 DOI: 10.1073/pnas.1812453116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blood oxygen level-dependent functional MRI (fMRI) constitutes a powerful neuroimaging technology to map brain-wide functions in response to specific sensory or cognitive tasks. However, fMRI mapping of the vestibular system, which is pivotal for our sense of balance, poses significant challenges. Physical constraints limit a subject's ability to perform motion- and balance-related tasks inside the scanner, and current stimulation techniques within the scanner are nonspecific to delineate complex vestibular nucleus (VN) pathways. Using fMRI, we examined brain-wide neural activity patterns elicited by optogenetically stimulating excitatory neurons of a major vestibular nucleus, the ipsilateral medial VN (MVN). We demonstrated robust optogenetically evoked fMRI activations bilaterally at sensorimotor cortices and their associated thalamic nuclei (auditory, visual, somatosensory, and motor), high-order cortices (cingulate, retrosplenial, temporal association, and parietal), and hippocampal formations (dentate gyrus, entorhinal cortex, and subiculum). We then examined the modulatory effects of the vestibular system on sensory processing using auditory and visual stimulation in combination with optogenetic excitation of the MVN. We found enhanced responses to sound in the auditory cortex, thalamus, and inferior colliculus ipsilateral to the stimulated MVN. In the visual pathway, we observed enhanced responses to visual stimuli in the ipsilateral visual cortex, thalamus, and contralateral superior colliculus. Taken together, our imaging findings reveal multiple brain-wide central vestibular pathways. We demonstrate large-scale modulatory effects of the vestibular system on sensory processing.
Collapse
Affiliation(s)
- Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yong Gu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Celia M Dong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Hai Tan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
9
|
Levy Nogueira M, Hamraz M, Abolhassani M, Bigan E, Lafitte O, Steyaert J, Dubois B, Schwartz L. Mechanical stress increases brain amyloid β, tau, and α‐synuclein concentrations in wild‐type mice. Alzheimers Dement 2017; 14:444-453. [DOI: 10.1016/j.jalz.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel Levy Nogueira
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | | | | - Erwan Bigan
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Olivier Lafitte
- LAGA, UMR 7539 Université Paris 13, Sorbonne Paris Cité Villetaneuse France
| | - Jean‐Marc Steyaert
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
- INSERM, CNRS, UMR‐S975 Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | |
Collapse
|
10
|
Mian OS, Li Y, Antunes A, Glover PM, Day BL. Effect of head pitch and roll orientations on magnetically induced vertigo. J Physiol 2016; 594:1051-67. [PMID: 26614577 PMCID: PMC4753258 DOI: 10.1113/jp271513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/19/2015] [Indexed: 11/10/2022] Open
Abstract
KEY POINTS Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. ABSTRACT High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals.
Collapse
Affiliation(s)
- Omar S Mian
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Yan Li
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Andre Antunes
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Brian L Day
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
|
12
|
Ward BK, Roberts DC, Della Santina CC, Carey JP, Zee DS. Vestibular stimulation by magnetic fields. Ann N Y Acad Sci 2015; 1343:69-79. [PMID: 25735662 DOI: 10.1111/nyas.12702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
13
|
Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish. PLoS One 2014; 9:e92109. [PMID: 24647586 PMCID: PMC3960171 DOI: 10.1371/journal.pone.0092109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish.
Collapse
|