1
|
Kidokoro K, Kadoya H, Cherney DZI, Kondo M, Wada Y, Umeno R, Kishi S, Nagasu H, Nagai K, Suzuki T, Sasaki T, Yamamoto M, Kanwar YS, Kashihara N. Insights into the Regulation of GFR by the Keap1-Nrf2 Pathway. KIDNEY360 2023; 4:1454-1466. [PMID: 37265366 PMCID: PMC10615375 DOI: 10.34067/kid.0000000000000171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Key Points Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1-NF (erythroid-derived 2)–like 2 pathway increases GFR without an appreciable increase in intraglomerular pressure. Kelch-like ECH-associated protein 1-NF (erythroid-derived 2)–like 2 pathway regulates GFR through changes in filtration area by modulating calcium dynamics and contractility in glomerular cells. Background Literature data suggest that the activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF (erythroid-derived 2)–like 2 (Nrf2) pathway increases GFR in patients with type 2 diabetes and CKD. However, the mechanisms whereby the Keap1-Nrf2 pathway regulates GFR are unknown. Methods Various renal physiological parameters were assessed in C57BL/6 mice (wild-type), Nrf2 -deficient mice, and Nrf2 -activated Keap1- knockdown mice. In addition, these parameters were assessed after the administration of receptor targeting agent (RTA) dh404 (CDDO‐dhTFEA), an Nrf2 activator. Results Pharmacologic and genetic Keap1 -Nrf2 activation increased renal blood flow (P < 0.05), glomerular volume (P < 0.05), and GFR (P < 0.05) but did not alter the afferent-to-efferent arteriolar diameter ratio or glomerular permeability. Calcium influx into the podocytes through transient receptor potential canonical (TRPC) channels in response to H2O2 was suppressed by Keap1-Nrf2 activation and TRPCs inhibition. Treatment with a TRPC6 and TRPC5 inhibitors increased single-nephron GFR in wild-type mice. Conclusions In conclusion, the Keap1-Nrf2 pathway regulates GFR through changes in ultrafiltration by modulating redox-sensitive intracellular calcium signaling and cellular contractility, mediated through TRPC activity, in glomerular cells, particularly the podocytes.
Collapse
Affiliation(s)
- Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - David Z. I. Cherney
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Megumi Kondo
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihisa Wada
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Reina Umeno
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kojiro Nagai
- Department of Nephrology, Shizuoka Geniral Hospital, Shizuoka, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
2
|
Wangensteen R, Gómez-Guzmán M, Banegas I, Rodríguez-Gómez I, Jiménez R, Duarte J, García-Estañ J, Vargas F. Vasoconstrictor and Pressor Effects of Des-Aspartate-Angiotensin I in Rat. Biomedicines 2022; 10:biomedicines10061230. [PMID: 35740253 PMCID: PMC9220223 DOI: 10.3390/biomedicines10061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigated the vasoactive effects of des-aspartate-angiotensin-I (DAA-I) in male Wistar rats on whole body vascular bed, isolated perfused kidneys, and aortic rings. Dose–response curves to DAA-I were compared with those to angiotensin II (Ang II). The Ang II-type-1 (AT1) receptor blocker, losartan, was used to evaluate the role of AT1 receptors in the responses to DAA-I. Studies were also conducted of the responsiveness in aortic rings after endothelium removal, nitric oxide synthase inhibition, or AT2 receptor blockade. DAA-I induced a dose-related systemic pressor response that was shifted to the right compared with Ang II. Losartan markedly attenuated the responsiveness to DAA-I. DAA-I showed a similar pattern in renal vasculature and aortic rings. In aortic rings, removal of endothelium and nitric oxide inhibition increased the sensitivity and maximal response to DAA-I and Ang II. AT2 receptor blockade did not significantly affect the responsiveness to DAA-I. According to these findings, DAA-I increases the systemic blood pressure and vascular tone in conductance and resistance vessels via AT1 receptor activation. This vasoconstrictor effect of DAA-I participates in the homeostatic control of arterial pressure, which can also contribute to the pathogenesis of hypertension. DAA-I may therefore be a potential therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Rosemary Wangensteen
- Area of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (R.W.); (I.B.)
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, University of Granada, 18071 Granada, Spain; (M.G.-G.); (R.J.); (J.D.)
| | - Inmaculada Banegas
- Area of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain; (R.W.); (I.B.)
| | | | - Rosario Jiménez
- Department of Pharmacology, University of Granada, 18071 Granada, Spain; (M.G.-G.); (R.J.); (J.D.)
| | - Juan Duarte
- Department of Pharmacology, University of Granada, 18071 Granada, Spain; (M.G.-G.); (R.J.); (J.D.)
| | - Joaquín García-Estañ
- Department of Physiology, Faculty of Medicine, IMIB, University of Murcia, 30120 Murcia, Spain;
| | - Félix Vargas
- Department of Physiology, University of Granada, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958243520
| |
Collapse
|
3
|
Abdulla MH, Sattar MA, Johns EJ. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats. Appl Physiol Nutr Metab 2016; 41:210-8. [DOI: 10.1139/apnm-2015-0411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague–Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L–1 in drinking water for 8 weeks or as an infusion (1.5 mg·kg–1·min–1) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p < 0.05) in FT rats compared with their untreated counterparts. The vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%–65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%–75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats.
Collapse
Affiliation(s)
- Mohammed H. Abdulla
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Munavvar A. Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | - Edward J. Johns
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, Hansell P, Palm F. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol 2014; 26:328-38. [PMID: 25183809 DOI: 10.1681/asn.2013090990] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy.
Collapse
Affiliation(s)
- Lina Nordquist
- Division of Integrative Physiology, Department of Medical Cell Biology and
| | | | - Angelica Fasching
- Division of Integrative Physiology, Department of Medical Cell Biology and
| | - Per Liss
- Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - Kumi Shoji
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan; and
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan; and
| | - Peter Hansell
- Division of Integrative Physiology, Department of Medical Cell Biology and
| | - Fredrik Palm
- Division of Integrative Physiology, Department of Medical Cell Biology and Division of Drug Research, Department of Medical and Health Sciences and Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Thyroid hormones and antioxidant systems: focus on oxidative stress in cardiovascular and pulmonary diseases. Int J Mol Sci 2013; 14:23893-909. [PMID: 24351864 PMCID: PMC3876084 DOI: 10.3390/ijms141223893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022] Open
Abstract
In previous works we demonstrated an inverse correlation between plasma Coenzyme Q10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. A Low-T3 syndrome is a condition observed in several chronic diseases: it is considered an adaptation mechanism, where there is a reduction in pro-hormone T4 conversion. Low T3-Syndrome is not usually considered to be corrected with replacement therapy. We review the role of thyroid hormones in regulation of antioxidant systems, also presenting data on total antioxidant capacity and Coenzyme Q10. Published studies suggest that oxidative stress could be involved in the clinical course of different heart diseases; our data could support the rationale of replacement therapy in low-T3 conditions.
Collapse
|
7
|
Chia TY, Sattar MA, Abdulla MH, Rathore HA, Ahmad FUD, Kaur G, Abdullah NA, Johns EJ. The effects of tempol on renal function and hemodynamics in cyclosporine-induced renal insufficiency rats. Ren Fail 2013; 35:978-88. [DOI: 10.3109/0886022x.2013.809563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Perez-Abud R, Rodríguez-Gómez I, Villarejo AB, Moreno JM, Wangensteen R, Tassi M, O'Valle F, Osuna A, Vargas F. Salt sensitivity in experimental thyroid disorders in rats. Am J Physiol Endocrinol Metab 2011; 301:E281-7. [PMID: 21521719 DOI: 10.1152/ajpendo.00690.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study assessed salt sensitivity, analyzing the effects of an increased saline intake on hemodynamic, morphological, and oxidative stress and renal variables in experimental thyroid disorders. Six groups of male Wistar rats were used: control, hypothyroid, hyperthyroid, and the same groups treated with salt (8% via food intake). Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 6 wk. Finally, BP and HR were recorded directly, and morphological, metabolic, plasma, and renal variables were measured. High-salt intake increased BP in thyroxine-treated rats but not in control or hypothyroid rats. High-salt intake increased cardiac mass in all groups, with a greater increase in hyperthyroid rats. Urinary isoprostanes and H(2)O(2) were higher in hyperthyroid rats and were augmented by high-salt intake in all groups, especially in hyperthyroid rats. High-salt intake reduced plasma thyroid hormone levels in hyperthyroid rats. Proteinuria was increased in hyperthyroid rats and aggravated by high-salt intake. Urinary levels of aminopeptidases (glutamyl-, alanyl-, aspartyl-, and cystinylaminopeptidase) were increased in hyperthyroid rats. All aminopeptidases were increased by salt intake in hyperthyroid rats but not in hypothyroid rats. In summary, hyperthyroid rats have enhanced salt sensitivity, and high-salt intake produces increased BP, cardiac hypertrophy, oxidative stress, and signs of renal injury. In contrast, hypothyroid rats are resistant to salt-induced BP elevation and renal injury signs. Urinary aminopeptidases are suitable biomarkers of renal injury.
Collapse
Affiliation(s)
- Rocío Perez-Abud
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|