1
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
2
|
Nguyen ITN, Wiggenhauser LM, Bulthuis M, Hillebrands JL, Feelisch M, Verhaar MC, van Goor H, Joles JA. Cardiac Protection by Oral Sodium Thiosulfate in a Rat Model of L-NNA-Induced Heart Disease. Front Pharmacol 2021; 12:650968. [PMID: 33935760 PMCID: PMC8082682 DOI: 10.3389/fphar.2021.650968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Hypertension contributes to cardiac damage and remodeling. Despite the availability of renin-angiotensin system inhibitors and other antihypertensive therapies, some patients still develop heart failure. Novel therapeutic approaches are required that are effective and without major adverse effects. Sodium Thiosulfate (STS), a reversible oxidation product of hydrogen sulfide (H2S), is a promising pharmacological entity with vasodilator and anti-oxidant potential that is clinically approved for the treatment of calciphylaxis and cyanide poisoning. We hypothesized that Sodium Thiosulfate improves cardiac disease in an experimental hypertension model and sought to investigate its cardioprotective effects by direct comparison to the ACE-inhibitor lisinopril, alone and in combination, using a rat model of chronic nitric oxide (NO) deficiency. Systemic nitric oxide production was inhibited in Sprague Dawley rats by administering N-ω-nitro-l-arginine (L-NNA) with the food for three weeks, leading to progressive hypertension, cardiac dysfunction and remodeling. We observed that STS, orally administered via the drinking water, ameliorated L-NNA-induced heart disease. Treatment with STS for two weeks ameliorated hypertension and improved systolic function, left ventricular hypertrophy, cardiac fibrosis and oxidative stress, without causing metabolic acidosis as is sometimes observed following parenteral administration of this drug. STS and lisinopril had similar protective effects that were not additive when combined. Our findings indicate that oral intervention with a H2S donor such as STS has cardioprotective properties without noticeable side effects.
Collapse
Affiliation(s)
- Isabel T N Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lucas M Wiggenhauser
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Marian Bulthuis
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Nguyen ITN, Brandt MM, van de Wouw J, van Drie RWA, Wesseling M, Cramer MJ, de Jager SCA, Merkus D, Duncker DJ, Cheng C, Joles JA, Verhaar MC. Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction. PLoS One 2020; 15:e0232399. [PMID: 32374790 PMCID: PMC7202634 DOI: 10.1371/journal.pone.0232399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions.
Collapse
Affiliation(s)
- Isabel T. N. Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten M. Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ruben W. A. van Drie
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marian Wesseling
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia C. A. de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jaap. A. Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Uchida L, Tanaka T, Saito H, Sugahara M, Wakashima T, Fukui K, Nangaku M. Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease. Am J Physiol Renal Physiol 2019; 318:F388-F401. [PMID: 31841388 DOI: 10.1152/ajprenal.00419.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death in patients with kidney disease. Hypoxia plays a crucial role in the progression of chronic kidney disease (CKD) and cardiovascular disease, which is associated with fibrosis, inflammation, and oxidative injury. Previous studies have indicated that prolyl hydroxylase (PHD) inhibitors, stabilizers of hypoxia-inducible factors (HIFs), can be used to treat acute organ injuries such as renal ischemia-reperfusion, myocardial infarction, and, in some contexts, CKD. However, the effects of PHD inhibitors on cardiovascular complications in CKD remain unknown. In the present study, we investigated whether HIF activation has a beneficial effect on kidney and cardiovascular outcomes in the remnant kidney model. We used the 5/6 nephrectomy model with the nitric oxide synthase inhibitor Nω-nitro-l-arginine (20 mg/L in the drinking water). Rats received diet with 0.005% enarodustat (PHD inhibitor) or vehicle for 8 wk starting 2 wk before 5/6 nephrectomy. Activation of HIF by the PHD inhibitor reduced cardiac hypertrophy and ameliorated myocardial fibrosis in association with restored capillary density and improvement in mitochondrial morphology. With regard to kidneys, enarodustat ameliorated fibrosis in association with reduced proinflammatory cytokine expression, reduced apoptosis, and restored capillary density, even though renal endpoints such as proteinuria and serum creatinine levels were not significantly affected by enarodustat, except for blood urea nitrogen levels at 4 wk. In addition, cardiac hypertrophy marker genes, including atrial natriuretic peptide, were suppressed in P19CL6 cells treated with enarodustat. These findings suggest that PHD inhibitors might show beneficial effects in cardiovascular complications caused by CKD.
Collapse
Affiliation(s)
- Lisa Uchida
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Wakashima
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Incorporated, Takatsuki, Japan
| | - Kenji Fukui
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Incorporated, Takatsuki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Mercanoglu G, Semen O. Nitric oxide mediated the effects of nebivolol in cardiorenal syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1314-1324. [PMID: 32128097 PMCID: PMC7038421 DOI: 10.22038/ijbms.2019.37400.8927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/14/2019] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Despite several proposed mechanisms for the pathophysiology of cardiorenal syndrome (CRS), the exact mechanism remains unclear. Nitrosative stress has been argued as a key mechanism recently. Nebivolol is a beta-blocker with nitric oxide (NO)-releasing effect. In the present study, NO-mediated effects of two different treatment regimes of nebivolol in CRS were studied. MATERIALS AND METHODS Rats were divided into: sham-operated (sham-control), myocardial infarction (MI)-induced, (MI-control) early nebivolol-treated (MI-neb1) and late nebivolol-treated (Mı-neb2) groups. The effects of nebivolol were assessed both in the early and late period of MI by histologic, hemodynamic and biologic studies. RESULTS Developed MI model was in line with the heart failure with preserved ejection fraction. Focal and total tubular damage findings were observed in MI-control group both in early and late period of MI. In parallel, subclinical functional damage was transformed into chronic renal dysfunction in this group. Increased inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) together with decreased neuronal NOS (nNOS) levels were in parallel with the increased inflammation and nitrosative stress biomarkers. Nebivolol effectively prevented both subclinical and clinical nephropathy. There was no statistical difference between the nebivolol treatment regimes. CONCLUSION The beneficial effects of nebivolol were closely related to the reduction of nitrosative damages as well as hemodynamic alterations. The NO-mediated effects were: prevention of nitrosative damage by decreasing iNOS, preservation of nNOS in order to maintain glomerular filtration rate (GFR), and restoration of eNOS in the late period of MI. On contrary to our previous work, early nebivolol administration had a similar effect with delayed administration of nebivolol on CRS.
Collapse
Affiliation(s)
- Guldem Mercanoglu
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Onder Semen
- Istanbul University, Istanbul Medical Faculty, Department of Pathology, Istanbul, Turkey
| |
Collapse
|
6
|
Yogasundaram H, Chappell MC, Braam B, Oudit GY. Cardiorenal Syndrome and Heart Failure-Challenges and Opportunities. Can J Cardiol 2019; 35:1208-1219. [PMID: 31300181 PMCID: PMC9257995 DOI: 10.1016/j.cjca.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiorenal syndromes (CRS) describe concomitant bidirectional dysfunction of the heart and kidneys in which 1 organ initiates, perpetuates, and/or accelerates decline of the other. CRS are common in heart failure and universally portend worsened prognosis. Despite this heavy disease burden, the appropriate diagnosis and classification of CRS remains problematic. In addition to the hemodynamic drivers of decreased renal perfusion and increased renal vein pressure, induction of the renin-angiotensin-aldosterone system, stimulation of the sympathetic nervous system, disruption of balance between nitric oxide and reactive oxygen species, and inflammation are implicated in the pathogenesis of CRS. Medical therapy of heart failure including renin-angiotensin-aldosterone system inhibition and β-adrenergic blockade can blunt these deleterious processes. Renovascular disease can accelerate the progression of CRS. Volume overload and diuretic resistance are common and complicate the management of CRS. In heart failure and CRS being treated with diuretics, worsening creatinine is not associated with worsened outcome if clinical decongestion is achieved. Adjunctive therapy is often required in the management of volume overload in CRS, but evidence for these therapies is limited. Anemia and iron deficiency are importantly associated with CRS and might amplify decline of cardiac and renal function. End-stage cardiac and/or renal disease represents an especially poor prognosis with limited therapeutic options. Overall, worsening renal function is associated with significantly increased mortality. Despite progress in the area of CRS, there are still multiple pathophysiological and clinical aspects of CRS that need further research to eventually develop effective therapeutic options.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark C Chappell
- Department of Surgery/Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Branko Braam
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Liu S. Heart-kidney interactions: mechanistic insights from animal models. Am J Physiol Renal Physiol 2019; 316:F974-F985. [PMID: 30838876 DOI: 10.1152/ajprenal.00624.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological changes in the heart or kidney can instigate the release of a cascade of cardiorenal mediators that promote injury in the other organ. Combined dysfunction of heart and kidney is referred to as cardiorenal syndrome (CRS) and has gained considerable attention. CRS has been classified into five distinct entities, each with different major pathophysiological changes. Despite the magnitude of the public health problem of CRS, the underlying mechanisms are incompletely understood, and effective intervention is unavailable. Animal models have allowed us to discover pathogenic molecular changes to clarify the pathophysiological mechanisms responsible for heart-kidney interactions and to enable more accurate risk stratification and effective intervention. Here, this article focuses on the use of currently available animal models to elucidate mechanistic insights in the clinical cardiorenal phenotype arising from primary cardiac injury, primary renal disease with special emphasis of chronic kidney disease-specific risk factors, and simultaneous cardiorenal/renocardiac dysfunction. The development of novel animal models that recapitulate more closely the cardiorenal phenotype in a clinical scenario and discover the molecular basis of this condition will be of great benefit.
Collapse
Affiliation(s)
- Shan Liu
- School of Medicine, South China University of Technology , Guangzhou , China
| |
Collapse
|
8
|
Papazova DA, Krebber MM, Oosterhuis NR, Gremmels H, van Zuilen AD, Joles JA, Verhaar MC. Dissecting recipient from donor contribution in experimental kidney transplantation: focus on endothelial proliferation and inflammation. Dis Model Mech 2018; 11:11/7/dmm035030. [PMID: 30038062 PMCID: PMC6078404 DOI: 10.1242/dmm.035030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (Tx) is considered the only definite treatment for end-stage kidney disease (ESKD) patients. The increasing prevalence of ESKD has necessitated the introduction of transplantation with kidneys from suboptimal donors. There is, however, still a lack of fundamental and longitudinal research on suboptimal kidney transplants. Specifically, there is a demand for accurate pre-Tx predictors of donor kidney function and injury to predict post-Tx outcome. In the present study, we combine rat models of chronic kidney disease (CKD) and renal Tx to dissect the effects of healthy and CKD renal grafts on healthy and CKD recipients. We show that renal function at 6 weeks post-Tx is exclusively determined by donor graft quality. Using cell tracking within enhanced green fluorescent protein-positive (eGFP+) recipients, we furthermore show that most inflammatory cells within the donor kidney originate from the donor. Oxidative and vascular extra-renal damage were, in contrast, determined by the recipient. Post- versus pre-Tx evaluation of grafts showed an increase in glomerular and peritubular capillary rarefaction in healthy but not CKD grafts within a CKD environment. Proliferation of glomerular endothelium was similar in all groups, and influx of eGFP+ recipient-derived cells occurred irrespective of graft or recipient status. Glomerular and peritubular capillary rarefaction, severity of inflammation and macrophage subtype data post-Tx were, however, determined by more complicated effects, warranting further study. Our experimental model could help to further distinguish graft from recipient environment effects, leading to new strategies to improve graft survival of suboptimal Tx kidneys. This article has an associated First Person interview with the first author of the paper. Summary: Using experimental kidney transplantation, we dissected donor graft from recipient environment effects, focusing on the endothelium and inflammation. These results can direct strategies to improve graft survival after suboptimal transplantation.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, Vrije Universiteit Amsterdam, POB 7057, 1007 MB Amsterdam, The Netherlands
| | - Merle M Krebber
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
9
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
10
|
Chronic kidney disease-associated cardiovascular disease: scope and limitations of animal models. Cardiovasc Endocrinol 2017; 6:120-127. [PMID: 31646129 DOI: 10.1097/xce.0000000000000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a heterogeneous range of disorders affecting up to 11% of the world's population. The majority of patients with CKD die of cardiovascular disease (CVD) before progressing to end-stage renal disease. CKD patients have an increased risk of atherosclerotic disease as well as a unique cardiovascular phenotype. There remains no clear aetiology for these issues and a better understanding of the pathophysiology of CKD-associated CVD is urgently needed. Although nonanimal studies can provide insights into the nature of disease, the whole-organism nature of CKD-associated CVD means that high-quality animal models, at least for the immediate future, are likely to remain a key tool in improving our understanding in this area. We will discuss the methods used to induce renal impairment in rodents and the methods available to assess cardiovascular phenotype and in each case describe the applicability to humans.
Collapse
|
11
|
Sugimura Y, Schmidt AK, Lichtenberg A, Assmann A, Akhyari P. * A Rat Model for the In Vivo Assessment of Biological and Tissue-Engineered Valvular and Vascular Grafts. Tissue Eng Part C Methods 2017; 23:982-994. [PMID: 28805140 DOI: 10.1089/ten.tec.2017.0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts. Through optional addition of procalcific diets, disease-inducing agents, and genetic modifications, complex multimorbidity scenarios mimicking the clinical reality in cardiovascular patients can be simulated. Applying this model, crucial aspects of the biocompatibility, biofunctionality and degeneration of vascular and valvular implants in dependency on graft preparation, and modification as well as systemic antidegenerative treatment of the recipient have been and will be addressed.
Collapse
Affiliation(s)
- Yukiharu Sugimura
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Anna Kathrin Schmidt
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Artur Lichtenberg
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| | - Alexander Assmann
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany .,2 Biomaterials Innovation Research Center , Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Payam Akhyari
- 1 Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University , Düsseldorf, Germany
| |
Collapse
|
12
|
|
13
|
Lee J, Bae EH, Ma SK, Kim SW. Altered Nitric Oxide System in Cardiovascular and Renal Diseases. Chonnam Med J 2016; 52:81-90. [PMID: 27231671 PMCID: PMC4880583 DOI: 10.4068/cmj.2016.52.2.81] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome).
Collapse
Affiliation(s)
- JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
14
|
Watanabe R, Suzuki JI, Wakayama K, Kumagai H, Ikeda Y, Akazawa H, Komuro I, Isobe M. Angiotensin II receptor blocker irbesartan attenuates cardiac dysfunction induced by myocardial infarction in the presence of renal failure. Hypertens Res 2015; 39:237-44. [DOI: 10.1038/hr.2015.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
|
15
|
Hewitson TD, Holt SG, Smith ER. Animal Models to Study Links between Cardiovascular Disease and Renal Failure and Their Relevance to Human Pathology. Front Immunol 2015; 6:465. [PMID: 26441970 PMCID: PMC4585255 DOI: 10.3389/fimmu.2015.00465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022] Open
Abstract
The close association between cardiovascular pathology and renal dysfunction is well documented and significant. Patients with conventional risk factors for cardiovascular disease like diabetes and hypertension also suffer renal dysfunction. This is unsurprising if the kidney is simply regarded as a “modified blood vessel” and thus, traditional risk factors will affect both systems. Consistent with this, it is relatively easy to comprehend how patients with either sudden or gradual cardiac and or vascular compromise have changes in both renal hemodynamic and regulatory systems. However, patients with pure or primary renal dysfunction also have metabolic changes (e.g., oxidant stress, inflammation, nitric oxide, or endocrine changes) that affect the cardiovascular system. Thus, cardiovascular and renal systems are intimately, bidirectionally and inextricably linked. Whilst we understand several of these links, some of the mechanisms for these connections remain incompletely explained. Animal models of cardiovascular and renal disease allow us to explore such mechanisms, and more importantly, potential therapeutic strategies. In this article, we review various experimental models used, and examine critically how representative they are of the human condition.
Collapse
Affiliation(s)
- Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital (RMH) , Melbourne, VIC , Australia ; Department of Medicine - RMH, University of Melbourne , Melbourne, VIC , Australia
| | - Stephen G Holt
- Department of Nephrology, Royal Melbourne Hospital (RMH) , Melbourne, VIC , Australia ; Department of Medicine - RMH, University of Melbourne , Melbourne, VIC , Australia
| | - Edward R Smith
- Department of Nephrology, Royal Melbourne Hospital (RMH) , Melbourne, VIC , Australia
| |
Collapse
|
16
|
Pijacka W, Clifford B, Tilburgs C, Joles JA, Langley-Evans S, McMullen S. Protective role of female gender in programmed accelerated renal aging in the rat. Physiol Rep 2015; 3:3/4/e12342. [PMID: 25902787 PMCID: PMC4425955 DOI: 10.14814/phy2.12342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aging kidney exhibits a progressive decline in glomerular filtration rate, accompanied by inflammatory and oxidative damage. We hypothesized that accelerated, age-related progression of renal injury is ovarian hormones-dependant. To address this we used an established model of developmentally programmed accelerated renal aging in the rat, superimposed by ovariectomy to assess interactions between ovarian hormones and the aging process. Under our experimental conditions, we found that kidney function worsens with age, that is GFR reduces over 18 month analyzed time-course and this was worsened by fetal exposure to maternal low-protein diet and absence of estrogen. Reduction in GFR was followed by increases in albuminuria, proteinuria, inflammatory markers, and tissue carbonyls, all suggesting inflammatory response and oxidative stress. This was associated with changes in AGTR2 expression which was greater at 18 months of age compared to earlier time points, but in MLP offspring only. Our studies show an influence of ovarian hormones on programmed accelerated renal aging and the AGTR2 across the lifespan. The main findings are that ovariectomy is a risk factor for increased aging-related renal injury and that this and oxidative damage might be related to changes in AGTR2 expression.
Collapse
Affiliation(s)
- Wioletta Pijacka
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Bethan Clifford
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Chantal Tilburgs
- Department of Nephrology and Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Centre, Utrecht, The Netherlands
| | - Simon Langley-Evans
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Sarah McMullen
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
17
|
|
18
|
Bongartz LG, Soni S, Cramer MJ, Steendijk P, Gaillard CAJM, Verhaar MC, Doevendans PA, van Veen TA, Joles JA, Braam B. Neuronal nitric oxide synthase-dependent amelioration of diastolic dysfunction in rats with chronic renocardiac syndrome. Cardiorenal Med 2015; 5:69-78. [PMID: 25759702 PMCID: PMC4327336 DOI: 10.1159/000370052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS (nNOS) was induced. Hence, we studied the role of nNOS, in vivo cardiac function and β-adrenergic response in our CRCS model by micromanometer/conductance catheter. Left ventricular (LV) hemodynamics were studied during administration of dobutamine (dobu), the highly specific irreversible inhibitor of nNOS L-VNIO [L-N5-(1-Imino-3-butenyl)-ornithine], or both at steady state and during preload reduction. Rats with CRCS showed LV systolic dysfunction at baseline, together with prolonged diastolic relaxation and rightward shift of the end-systolic pressure-volume relationships. After L-VNIO infusion, diastolic relaxation of CRCS rats further prolonged. The time constant of active relaxation (tau) increased by 25 ± 6% from baseline (p < 0.05), and the maximal rate of pressure decrease was 36 ± 7% slower (p < 0.001). These variables did not change in controls. In our CRCS model, nNOS did not seem to affect systolic dysfunction. In summary, in this model of CRCS, blockade of nNOS further worsens diastolic dysfunction and L-VNIO does not influence inherent contractility and the response to dobu stress.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands ; Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Siddarth Soni
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten-Jan Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul Steendijk
- Department of Cardiology and Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo A J M Gaillard
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Branko Braam
- Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, Alta., Canada ; Department Physiology, University of Alberta, Edmonton, Alta., Canada
| |
Collapse
|
19
|
de Jong S, van Middendorp LB, Hermans RH, de Bakker JM, Bierhuizen MF, Prinzen FW, van Rijen HV, Losen M, Vos MA, van Zandvoort MA. Ex Vivo and in Vivo Administration of Fluorescent CNA35 Specifically Marks Cardiac Fibrosis. Mol Imaging 2014; 13. [DOI: 10.2310/7290.2014.00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sanne de Jong
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Lars B. van Middendorp
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Robin H.A. Hermans
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Jacques M.T. de Bakker
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marti F.A. Bierhuizen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Frits W. Prinzen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Harold V.M. van Rijen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Mario Losen
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marc A. Vos
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Marc A.M.J. van Zandvoort
- From the Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, the Netherlands; Departments of Physiology, Cardiothoracic Surgery, and Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands; and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| |
Collapse
|
20
|
Kuczmarski JM, Martens CR, Kim J, Lennon-Edwards SL, Edwards DG. Cardiac function is preserved following 4 weeks of voluntary wheel running in a rodent model of chronic kidney disease. J Appl Physiol (1985) 2014; 117:482-91. [PMID: 25059238 DOI: 10.1152/japplphysiol.00344.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of this investigation was to determine the effect of 4 wk of voluntary wheel running on cardiac performance in the 5/6 ablation-infarction (AI) rat model of chronic kidney disease (CKD). We hypothesized that voluntary wheel running would be effective in preserving cardiac function in AI. Male Sprague-Dawley rats were divided into three study groups: 1) sham, sedentary nondiseased control; 2) AI-SED, sedentary AI; and 3) AI-WR, wheel-running AI. Animals were maintained over a total period of 8 wk following AI and sham surgery. The 8-wk period included 4 wk of disease development followed by a 4-wk voluntary wheel-running intervention/sedentary control period. Cardiac performance was assessed using an isolated working heart preparation. Left ventricular (LV) tissue was used for biochemical tissue analysis. In addition, soleus muscle citrate synthase activity was measured. AI-WR rats performed a low volume of exercise, running an average of 13 ± 2 km, which resulted in citrate synthase activity not different from that in sham animals. Isolated AI-SED hearts demonstrated impaired cardiac performance at baseline and in response to preload/afterload manipulations. Conversely, cardiac function was preserved in AI-WR vs. sham hearts. LV nitrite + nitrate and expression of LV nitric oxide (NO) synthase isoforms 2 and 3 in AI-WR were not different from those of sham rats. In addition, LV H2O2 in AI-WR was similar to that of sham and associated with increased expression of LV superoxide-dismutase-2 and glutathione peroxidase-1/2. The findings of the current study suggest that a low-volume exercise intervention is sufficient to maintain cardiac performance in rats with CKD, potentially through a mechanism related to improved redox homeostasis and increased NO.
Collapse
Affiliation(s)
- James M Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Jahyun Kim
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shannon L Lennon-Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware; and
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
21
|
Papazova DA, van Koppen A, Koeners MP, Bleys RL, Verhaar MC, Joles JA. Maintenance of hypertensive hemodynamics does not depend on ROS in established experimental chronic kidney disease. PLoS One 2014; 9:e88596. [PMID: 24533120 PMCID: PMC3922946 DOI: 10.1371/journal.pone.0088596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/13/2014] [Indexed: 12/24/2022] Open
Abstract
While the presence of oxidative stress in chronic kidney disease (CKD) is well established, its relation to hypertensive renal hemodynamics remains unclear. We hypothesized that once CKD is established blood pressure and renal vascular resistance (RVR) no longer depend on reactive oxygen species. CKD was induced by bilateral ablation of 2/3 of each kidney. Compared to age-matched, sham-operated controls all ablated rats showed proteinuria, decreased glomerular filtration rate (GFR), more renal damage, higher mean arterial pressure (MAP), RVR and excretion of oxidative stress markers and hydrogen peroxide, while excretion of stable nitric oxide (NO) metabolites tended to decrease. We compared MAP, RVR, GFR and fractional excretion of sodium under baseline and during acute Tempol, PEG-catalase or vehicle infusion in rats with established CKD vs. controls. Tempol caused marked reduction in MAP in controls (96±5 vs.79±4 mmHg, P<0.05) but not in CKD (130±5 vs. 127±6 mmHg). PEG-catalase reduced MAP in both groups (controls: 102±2 vs. 94±4 mmHg, P<0.05; CKD: 118±4 vs. 110±4 mmHg, P<0.05), but did not normalize MAP in CKD rats. Tempol and PEG-catalase slightly decreased RVR in both groups. Fractional excretion of sodium was increased by both Tempol and PEG-catalase in both groups. PEG-catalase decreased TBARS excretion in both groups. In sum, although oxidative stress markers were increased, MAP and RVR did not depend more on oxidative stress in CKD than in controls. Therefore reactive oxygen species appear not to be important direct determinants of hypertensive renal hemodynamics in this model of established CKD.
Collapse
Affiliation(s)
- Diana A. Papazova
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arianne van Koppen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten P. Koeners
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald L. Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A. Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Abstract
Combined cardiac and renal dysfunction has gained considerable attention. Hypotheses about its pathogenesis have been formulated, albeit based on a relatively small body of experimental studies, and a clinical classification system has been proposed. Cardiorenal syndrome, as presently defined, comprises a heterogeneous group of acute and chronic clinical conditions, in which the failure of one organ (heart or kidney) initiates or aggravates failure of the other. This conceptual framework, however, has two major drawbacks: the first is that, despite worldwide interest, universally accepted definitions of cardiorenal syndrome are lacking and characterization of heart and kidney failure is not uniform. This lack of consistency hampers experimental studies on mechanisms of the disease. The second is that, although progress has been made in developing hypotheses for the pathogenesis of cardiorenal syndrome, these initiatives are at an impasse. No hierarchy has been identified in the myriad of haemodynamic and non-haemodynamic factors mediating cardiorenal syndrome. This Review discusses current understanding of cardiorenal syndrome and provides a roadmap for further studies in this field. Ultimately, discussion of the definition and characterization issues and of the lack of organization among pathogenetic factors is hoped to contribute to further advancement of this complex field.
Collapse
|
23
|
van Koppen A, Joles JA, Bongartz LG, van den Brandt J, Reichardt HM, Goldschmeding R, Nguyen TQ, Verhaar MC. Healthy bone marrow cells reduce progression of kidney failure better than CKD bone marrow cells in rats with established chronic kidney disease. Cell Transplant 2013; 21:2299-312. [PMID: 23231961 DOI: 10.3727/096368912x636795] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a major health care problem. New interventions to slow or prevent disease progression are urgently needed. We studied functional and structural effects of infusion of healthy and CKD bone marrow cells (BMCs) in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) in Lewis rats, and disease progression was accelerated with L-NNA and 6% NaCl diet. Six weeks after SNX, CKD rats received healthy eGFP(+) BMCs, CKD eGFP(+) BMCs, or vehicle by single renal artery injection. Healthy BMCs were functionally effective 6 weeks after administration: glomerular filtration rate (GFR; inulin clearance) (0.48±0.16 vs. 0.26±0.14 ml/min/100 g) and effective renal plasma flow (RPF; PAH clearance) (1.6±0.40 vs. 1.0±0.62 ml/min/100 g) were higher in healthy BMC- versus vehicle-treated rats (both p < 0.05). Systolic blood pressure (SBP) and proteinuria were lower 5 weeks after treatment with healthy BMCs versus vehicle (SBP, 151±13 vs. 186±25 mmHg; proteinuria, 33±20 vs. 59±39 mg/day, both p < 0.05). Glomerular capillary density was increased, and less sclerosis was detected after healthy BMCs (both p < 0.05). Tubulointerstitial inflammation was also decreased after healthy BMCs. eGFP(+) cells were present in the glomeruli and peritubular capillaries of the remnant kidney in all BMC-treated rats. CKD BMCs also reduced SBP, proteinuria, glomerulosclerosis, and tubular atrophy versus vehicle in CKD rats. However, CKD BMC therapy was not functionally effective versus vehicle [GFR: 0.28±0.09 vs. 0.26±0.16 ml/min/100 g (NS), RPF: 1.15±0.36 vs. 0.78±0.44 ml/min/100 g (NS)], and failed to decrease tubulointerstitial inflammation and fibrosis. Single intrarenal injection of healthy BMCs in rats with established CKD slowed progression of the disease, associated with increased glomerular capillary density and less sclerosis, whereas injection of CKD BMCs was less effective.
Collapse
Affiliation(s)
- Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
van Koppen A, Verhaar MC, Bongartz LG, Joles JA. 5/6th nephrectomy in combination with high salt diet and nitric oxide synthase inhibition to induce chronic kidney disease in the Lewis rat. J Vis Exp 2013:e50398. [PMID: 23851420 DOI: 10.3791/50398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
Collapse
Affiliation(s)
- Arianne van Koppen
- Department of Nephrology & Hypertension, University Medical Center Utrecht.
| | | | | | | |
Collapse
|
25
|
Abstract
The incidence of heart failure and renal failure is increasing and is associated with poor prognosis. Moreover, these conditions do often coexist and this coexistence results in worsened outcome. Various mechanisms have been proposed as an explanation of this interrelation, including changes in hemodynamics, endothelial dysfunction, inflammation, activation of renin-angiotensin-aldosterone system, and/or sympathetic nervous system. However, the exact mechanisms initializing and maintaining this interaction are still unknown. In many experimental studies on cardiac or renal dysfunction, the function of the other organ was either not addressed or the authors failed to show any decline in its function despite histological changes. There are few studies in which the dysfunction of both heart and kidney function has been described. In this review, we discuss animal models of combined cardiorenal dysfunction. We show that translation of the results from animal studies is limited, and there is a need for new and better models of the cardiorenal interaction to improve our understanding of this syndrome. Finally, we propose several requirements that a new animal model should meet to serve as a tool for studies on the cardiorenal syndrome.
Collapse
|
26
|
Peng DF, Tang SY, Hu YJ, Chen J, Yang L. Pathophysiological model of chronic heart failure complicated with renal failure caused by three-quarter nephrectomy and subcutaneous injection of isoprenaline. Exp Ther Med 2012; 5:835-839. [PMID: 23403929 PMCID: PMC3570093 DOI: 10.3892/etm.2012.865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/13/2012] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the pathophysiological changes in a rat chronic heart failure complicated with renal failure model, caused by three-quarters nephrectomy and subcutaneous injection of isoproterenol (ISO). Sprague-Dawley (SD) rats in the model group received three-quarters nephrectomy after twice undergoing surgical resections and subcutaneous injection of ISO (100 mg/kg body weight, injected twice, with a 24 h interval) after one week, while rats in the control group received sham surgery and injection of normal saline. Survival rate, heart failure and renal failure were compared between the two groups after 4 weeks. Serum creatinine (Cr), blood urea nitrogen (BUN), B-type natriuretic protein (BNP), aldolase (ALD), angiotensin II (Ang II) and C-reactive protein (CRP) were determined by kit assay. Urine protein at 24 h was determined by the Bradford method and left ventricular systolic pressure (LVSP), left ventricular diastolic pressure (LVDP) and left ventricular end-diastolic pressure (LVEDP), as well as the maximum rates of increased and decreased left ventricular pressure (±dP/dtmax) were determined by left ventricular intubation. Heart weight indices were determined and the myocardial pathological conditions were observed by hematoxylin and eosin (HE) staining. There was no death in the control group, while the survival rate of the model group was 73%. Compared with the control group, each index of serum and urine protein in the model group was significantly increased. Additionally, LVSP was decreased, LVDP and LVEDP were increased and heart weight index was increased, with a significant difference. The serum Cr was positively correlated to BNP levels in the model group. Three-quarters nephrectomy and subcutaneous injection of ISO induces left ventricular heart failure and renal failure at the same time, which is characterized in pathophysiology by left ventricular diastolic and systolic function failure, left ventricular myocardial hypertrophy and reconstruction complicated with renal insufficiency.
Collapse
Affiliation(s)
- Ding-Feng Peng
- Department of Vasculocardiology, Wuhan Puai Hospital, Wuhan 430033, P.R. China
| | | | | | | | | |
Collapse
|
27
|
Bongartz LG, Braam B, Gaillard CA, Cramer MJ, Goldschmeding R, Verhaar MC, Doevendans PA, Joles JA. Target organ cross talk in cardiorenal syndrome: animal models. Am J Physiol Renal Physiol 2012; 303:F1253-63. [PMID: 22914779 DOI: 10.1152/ajprenal.00392.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The combination of chronic kidney disease (CKD) and heart failure (HF) is associated with an adverse prognosis. Although clinical studies hint at a specific bidirectional interaction between HF and CKD, insight into the pathogenesis of cardiorenal syndrome (CRS) remains limited. We review available evidence on cardiorenal interactions from animal models of CKD and HF and discuss several studies that employed a "double-hit" model to research organ cross talk between the heart and kidneys. Regarding cardiac changes in CKD models, parameters of cardiac remodeling are equivocal and cardiac systolic function generally remains preserved. Structural changes include hypertrophy, fibrosis, and microvasculopathy. In models of HF, data on renal pathology are mostly limited to functional hemodynamic changes. Most double-hit models were unable to show that combined renal and cardiac injury induces additive damage to both organs, perhaps because of the short study duration or absence of organ failure. Because of this lack of "dual-failure" models, we have developed two rat models of combined CKD and HF in which renal dysfunction induced by a subtotal nephrectomy preceded cardiac dysfunction. Cardiac dysfunction was induced either functionally by nitric oxide depletion or structurally by myocardial infarction. In both models, we found that cardiac remodeling and failure were worse in CKD rats compared with controls undergoing the same cardiac insult. Variables of renal damage, like glomerulosclerosis and proteinuria, were also further worsened by combined cardiorenal injury. These studies show that target organ cross talk does occur in CRS. These models may be useful for interventional studies in rats.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Dept. of Nephrology and Hypertension, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Increased cardiovascular risk in rats with primary renal dysfunction; mediating role for vascular endothelial function. Basic Res Cardiol 2012; 107:242. [PMID: 22258067 PMCID: PMC3329880 DOI: 10.1007/s00395-011-0242-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/01/2011] [Accepted: 12/23/2011] [Indexed: 11/04/2022]
Abstract
Primary chronic kidney disease is associated with high cardiovascular risk. However, the exact mechanisms behind this cardiorenal interaction remain unclear. We investigated the interaction between heart and kidneys in novel animal model for cardiorenal interaction. Normal Wistar rats and Munich Wistar Fromter rats, spontaneously developing renal dysfunction, were subjected to experimental myocardial infarction to induce cardiac dysfunction (CD) and combined cardiorenal dysfunction (CRD), respectively (N = 5–10). Twelve weeks later, cardiac- and renal parameters were evaluated. Cardiac, but not renal dysfunction was exaggerated in CRD. Accelerated cardiac dysfunction in CRD was indicated by decreased cardiac output (CD 109 ± 10 vs. CRD 79 ± 8 ml/min), diastolic dysfunction (E/e′) (CD 26 ± 2 vs. CRD 50 ± 5) and left ventricular overload (LVEDP CD 10.8 ± 2.8 vs. CRD 21.6 ± 1.7 mmHg). Congestion in CRD was confirmed by increased lung and atrial weights, as well as exaggerated right ventricular hypertrophy. Absence of accelerated renal dysfunction, measured by increased proteinuria, was supported by absence of additional focal glomerulosclerosis or further decline of renal blood flow in CRD. Only advanced peripheral endothelial dysfunction, as found in CRD, appeared to correlate with both renal and cardiac dysfunction parameters. Thus, proteinuric rats with myocardial infarction showed accelerated cardiac but not renal dysfunction. As parameters mimic the cardiorenal syndrome, these rats may provide a clinically relevant model to study increased cardiovascular risk due to renal dysfunction. Peripheral endothelial dysfunction was the only parameter that correlated with both renal and cardiac dysfunction, which may indicate a mediating role in cardiorenal interaction.
Collapse
|
29
|
Bongartz LG, Joles JA, Verhaar MC, Cramer MJ, Goldschmeding R, Tilburgs C, Gaillard CA, Doevendans PA, Braam B. Subtotal nephrectomy plus coronary ligation leads to more pronounced damage in both organs than either nephrectomy or coronary ligation. Am J Physiol Heart Circ Physiol 2011; 302:H845-54. [PMID: 22140040 DOI: 10.1152/ajpheart.00261.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coexistence of chronic kidney disease (CKD) and heart failure (HF) in humans is associated with poor outcome. We hypothesized that preexistent CKD worsens cardiac outcome after myocardial infarction, and conversely that ensuing HF worsens progression of CKD. Subtotally nephrectomized (SNX) or sham-operated (CON) rats were subjected to coronary ligation (CL) or sham surgery in week 9 to realize four groups: CON, SNX, CON + CL, and SNX + CL. Blood pressure and renal function were measured in weeks 8, 11, 13, and 15. In week 16, cardiac hemodynamics and end-organ damage were assessed. Blood pressure was significantly lower in SNX + CL vs. SNX. Despite this, glomerulosclerosis was more severe in SNX + CL vs. SNX. Two weeks after CL, SNX + CL had more cardiac dilatation compared with CON + CL (end-diastolic volume index: 0.28 ± 0.04 vs. 0.19 ± 0.03 ml/100 g body wt; mean ± SD, P < 0.001), although infarct size was similar. During follow-up in SNX + CL, ejection fraction declined. Mortality was only observed in SNX + CL (2 out of 9). In SNX + CL, end-diastolic pressure (18 ± 4 mmHg) and tau (29 ± 9 ms), the time constant of active relaxation, were significantly higher compared with SNX (13 ± 3 mmHg, 20 ± 4 ms; P < 0.01) and CON + CL (11 ± 5 mmHg, 17 ± 2 ms; P < 0.01). The diameter of small arterioles in the myocardium was significantly decreased in SNX + CL vs. CON + CL (P < 0.01). Urinary excretion of NO metabolites was significantly lower in SNX + CL compared with both CL and SNX. This study demonstrates the existence of more heart and more kidney damage in a new model of combined CKD and HF than in the individual models. Such enhanced damage appears to be separate from systemic hemodynamic changes. Reduced nitric oxide availability may have played a role in both worsened glomerulosclerosis and cardiac diastolic function and appears to be a connector in the cardiorenal syndrome.
Collapse
|
30
|
Bongartz LG, Braam B, Verhaar MC, Cramer MJM, Goldschmeding R, Gaillard CA, Steendijk P, Doevendans PA, Joles JA. The nitric oxide donor molsidomine rescues cardiac function in rats with chronic kidney disease and cardiac dysfunction. Am J Physiol Heart Circ Physiol 2010; 299:H2037-45. [PMID: 20852057 DOI: 10.1152/ajpheart.00400.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We recently developed a rat model of cardiorenal failure that is characterized by severe left ventricular systolic dysfunction (LVSD) and low nitric oxide (NO) production that persisted after temporary low-dose NO synthase inhibition. We hypothesized that LVSD was due to continued low NO availability and might be reversed by supplementing NO. Rats underwent a subtotal nephrectomy and were treated with low-dose NO synthase inhibition with N(ω)-nitro-l-arginine up to week 8. After 3 wk of washout, rats were treated orally with either the long-acting, tolerance-free NO donor molsidomine (Mols) or vehicle (Veh). Cardiac and renal function were measured on weeks 11, 13, and 15. On week 16, LV hemodynamics and pressure-volume relationships were measured invasively, and rats were killed to quantify histological damage. On week 15, blood pressure was mildly reduced and creatinine clearance was increased by Mols (both P < 0.05). Mols treatment improved ejection fraction (53 ± 3% vs. 37 ± 2% in Veh-treated rats, P < 0.001) and stroke volume (324 ± 33 vs. 255 ± 15 μl in Veh-treated rats, P < 0.05). Rats with Mols treatment had lower end-diastolic pressures (8.5 ± 1.1 mmHg) than Veh-treated rats (16.3 ± 3.5 mmHg, P < 0.05) and reduced time constants of relaxation (21.9 ± 1.8 vs. 30.9 ± 3.3 ms, respectively, P < 0.05). The LV end-systolic pressure-volume relationship was shifted to the left in Mols compared with Veh treatment. In summary, in a model of cardiorenal failure with low NO availability, supplementing NO significantly improves cardiac systolic and diastolic function without a major effect on afterload.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Acciarri N, Galassi E, Giulioni M, Pozzati E, Grasso V, Palandri G, Badaloni F, Zucchelli M, Calbucci F. Cavernous malformations of the central nervous system in the pediatric age group. Pediatr Neurosurg 2009; 45:81-104. [PMID: 19307743 DOI: 10.1159/000209283] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 12/15/2008] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The main clinico-diagnostic features, risk factors and associated diseases of cavernous malformations (CMs), also called cavernous angiomas or cavernomas, of the central nervous system (CNS) in children are described, and the most relevant differences compared to the affected adult population are pointed out, focusing on the management of pediatric patients harboring cranial and spinal CMs. MATERIALS This was a retrospective study of a series of 42 children symptomatic for CMs of the cranial and spinal compartments (35 supratentorial brain lesions, 5 infratentorial and 2 in the spinal region) operated on between 1975 and 2005, with a clinical follow-up ranging from 12 to 192 months. The results were compared with those found in the most recent literature dealing with pediatric CMs of the CNS. RESULTS Surgical treatment produced excellent or good results in 69% of our 42 children. Unchanged neurological deficits were observed in 23.8% of cases, while morbidity from surgical procedures was 7.14%. Mortality was absent in this series. These surgical results are comparable with those found in the literature, where morbidity and mortality rates from surgery are 8.8 and 1.13%, respectively, and are mostly associated with procedures for the excision of deep, critically located cavernomas. CONCLUSION CMs represent the most common CNS vascular lesion in children, although their incidence is 4 times lower than that of the adult population. The natural history of pediatric CMs throughout the neuraxis seems to be more aggressive than in adult patients; these lesions have higher rates of growth and hemorrhage, larger dimensions and often atypical radiological pictures at diagnosis. Beside the familial form of the disease, which is more often associated with multiple lesions and an earlier age of clinical presentation, the major risk factor for CMs in children seems to be radiotherapy for CNS tumors. Furthermore, a greater number of CMs coexistent with mixed angiomatous lesions have been reported in children than in adults. Surgical results are related to the preoperative neurological status of the children; symptomatic patients who are operated on early, before they develop severe neurological deficits or long-standing seizures, may achieve the best clinical outcome. Radiosurgery does not seem to be advisable in children as an alternative treatment for deep CMs or those causing epilepsy.
Collapse
Affiliation(s)
- Nicola Acciarri
- Department of Neurosurgery, Bellaria Hospital, Via Altura 3, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|