1
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
2
|
Bao Y, Shen Y, Li X, Wu Z, Jiao L, Li J, Zhou Q, Jin M. A New Insight Into the Underlying Adaptive Strategies of Euryhaline Marine Fish to Low Salinity Environment Through Cholesterol Nutrition to Regulate Physiological Responses. Front Nutr 2022; 9:855369. [PMID: 35571938 PMCID: PMC9097951 DOI: 10.3389/fnut.2022.855369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 01/28/2023] Open
Abstract
Salinity is an important environmental factor that can affect the metabolism of aquatic organisms, while cholesterol can influence cellular membrane fluidity which are vital in adaption to salinity changes. Hence, a 4-week feeding trial was conducted to evaluate the effects of water salinity (normal 23 psu and low 5 psu) and three dietary cholesterol levels (CH0.16, 0.16%, CH1.0, 1.0% and CH1.6, 1.6%) on osmoregulation, cholesterol metabolism, fatty acid composition, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, oxidative stress (OS), and endoplasmic reticulum stress (ERS) of the euryhaline fish black seabream (Acanthopagrus schlegelii). The results indicated that in low salinity, fish fed with the CH1.0 diet improved ion reabsorption and osmoregulation by increased Na+ concentration in serum as well as expression levels of osmoregulation-related gene expression levels in gills. Both dietary cholesterol level and water salinity significantly affected most cholesterol metabolic parameters in the serum and tissues, and the results showed that low salinity promoted cholesterol synthesis but inhibited cholesterol catabolism. Besides, in low salinity, hepatic expression levels of LC-PUFA biosynthesis genes were upregulated by fed dietary cholesterol supplementation with contents of LC-PUFAs, including EPA and DHA being increased. Malondialdehyde (MDA) was significantly increased in low-salinity environment, whereas MDA content was decreased in fish fed with dietary CH1.0 by activating related antioxidant enzyme activity and gene expression levels. A similar pattern was recorded for ERS, which stimulated the expression of nuclear factor kappa B (nf-κb), triggering inflammation. Nevertheless, fish reared in low salinity and fed with dietary CH1.0 had markedly alleviated ERS and downregulated gene expression levels of pro-inflammatory cytokines. Overall, these findings demonstrate that cholesterol, as an important nutrient, plays vital roles in the process of adaptation to low salinity of A. schlegelii, and provides a new insight into underlying adaptive strategies of euryhaline marine fish reared in low salinity.
Collapse
Affiliation(s)
- Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Zhaoxun Wu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jing Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Min Jin
| |
Collapse
|
3
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
4
|
Barany A, Shaughnessy CA, McCormick SD. Corticosteroid control of Na +/K +-ATPase in the intestine of the sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2021; 307:113756. [PMID: 33741310 DOI: 10.1016/j.ygcen.2021.113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/15/2023]
Abstract
Anadromous sea lamprey (Petromyzon marinus) larvae undergo a months-long true metamorphosis during which they develop seawater (SW) tolerance prior to downstream migration and SW entry. We have previously shown that intestinal Na+/K+-ATPase (NKA) activity increases during metamorphosis and is critical to the osmoregulatory function of the intestine in SW. The present study investigated the role of 11-deoxycortisol (S) in controlling NKA in the anterior (AI) and posterior (PI) intestine during sea lamprey metamorphosis. In a tissue profile, nka mRNA and protein were most abundant in the gill, kidney, and AI. During metamorphosis, AI nka mRNA increased 10-fold, whereas PI nka mRNA did not change. Specific corticosteroid receptors were found in the AI, which had a higher binding affinity for S compared to 11-deoxycorticosterone (DOC). In vivo administration of S in mid-metamorphic lamprey upregulated NKA activity 3-fold in the AI and PI, whereas administration of DOC did not affect intestinal NKA activity. During a 24 h SW challenge test, dehydration of white muscle moisture was rescued by prior treatment with S, which was associated with increased intestinal nka mRNA and NKA activity. These results indicate that intestinal osmoregulation in sea lamprey is a target for control by S during metamorphosis and the development of SW tolerance.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Spain; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA.
| | - Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Liew HJ, Pelle A, Chiarella D, Faggio C, Tang CH, Blust R, De Boeck G. Common carp, Cyprinus carpio, prefer branchial ionoregulation at high feeding rates and kidney ionoregulation when food supply is limited: additional effects of cortisol and exercise. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:451-469. [PMID: 31773438 DOI: 10.1007/s10695-019-00736-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to examine ionoregulatory parameters during exercise and cortisol elevation in common carp fed different food rations. Fish subjected to two different feeding regimes (0.5 or 3.0% body mass (BM) daily) received no implant or an intraperitoneal cortisol implant (250 mg/kg BM) or sham, and were monitored over a 168-h post-implant (PI) period under resting, low aerobic swimming or exhaustive swimming conditions. Plasma osmolality was maintained at relatively stable levels without much influence of feeding, swimming or cortisol, especially in low feeding groups. Nevertheless, a transient hyponatremia was observed in all low feeding fish implanted with cortisol. The hyponatremia was more pronounced in fish swum to exhaustion but even in this group, Na+ levels returned to control levels as cortisol levels recovered (168 h-PI). Cortisol-implanted fish also had lower plasma Cl- levels, and this loss of plasma Cl- was more prominent in fish fed a high ration during exhaustive swimming (recovered at 168 h-PI). Cortisol stimulated branchial NKA and H+ ATPase activities, especially in high ration fish. In contrast, low ration fish upregulated kidney NKA and H+ ATPase activities when experiencing elevated levels of cortisol. In conclusion, low feeding fish experience an ionoregulatory disturbance in response to cortisol implantation especially when swum to exhaustion in contrast to high feeding fish.
Collapse
Affiliation(s)
- Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium.
| | - Antonella Pelle
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Daniela Chiarella
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| |
Collapse
|
6
|
Barany A, Shaughnessy CA, Fuentes J, Mancera JM, McCormick SD. Osmoregulatory role of the intestine in the sea lamprey ( Petromyzon marinus). Am J Physiol Regul Integr Comp Physiol 2019; 318:R410-R417. [PMID: 31747320 DOI: 10.1152/ajpregu.00033.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lampreys are the most basal vertebrates with an osmoregulatory strategy. Previous research has established that the salinity tolerance of sea lamprey increases dramatically during metamorphosis, but underlying changes in the gut have not been examined. In the present work, we examined changes in intestinal function during metamorphosis and seawater exposure of sea lamprey (Petromyzon marinus). Fully metamorphosed juvenile sea lamprey had 100% survival after direct exposure to 35 parts per thousand seawater (SW) and only slight elevations in plasma chloride (Cl-) levels. Drinking rates of sea lamprey juveniles in seawater were 26-fold higher than juveniles in freshwater (FW). Na+-K+-ATPase (NKA) activity in the anterior and posterior intestine increased 12- and 3-fold, respectively, during metamorphosis, whereas esophageal NKA activity was lower than in the intestine and did not change with development. Acclimation to SW significantly enhanced NKA activity in the posterior intestine but did not significantly change NKA activity in the anterior intestine, which remained higher than that in the posterior intestine. Intestinal Cl- and water uptake, which were observed in ex vivo preparations of anterior and posterior intestine under both symmetric and asymmetric conditions, were higher in juveniles than in larvae and were similar in magnitude of those of teleost fish. Inhibition of NKA by ouabain in ex vivo preparations inhibited intestinal water absorption by 64%. Our results indicate drinking and intestinal ion and water absorption are important to osmoregulation in SW and that preparatory increases in intestinal NKA activity are important to the development of salinity tolerance that occurs during sea lamprey metamorphosis.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain.,Centre of Marine Sciences, University of Algarve, Gambelas, Faro, Portugal
| | - C A Shaughnessy
- United States Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - J Fuentes
- Centre of Marine Sciences, University of Algarve, Gambelas, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| | - S D McCormick
- United States Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Wan XP, Xie P, Bu Z, Zou XT, Gong DQ. Prolactin induces lipid synthesis of organ-cultured pigeon crops. Poult Sci 2019; 98:1842-1853. [PMID: 30590797 DOI: 10.3382/ps/pey540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022] Open
Abstract
The objective of this research was to examine the effects of prolactin (PRL) on the lipid synthesis of organ-cultured pigeon crops in vitro. In experiment 1, the histology, activities of enzymes, and expression of genes involved in metabolism and apoptosis of organ-cultured pigeon crops were analyzed over a 7-d culture period. The results showed that cultured crops maintained their structural integrity for up to 3 d in vitro. Beyond 3 d, caspase-3 activity and Bak1 gene expression increased with day of culture, whereas the activities of succinate dehydrogenase, Na+-K+-ATPase, Ca2+-Mg2+-ATPase, total ATPase, and gene expression of Bcl-2 and CK-19 diminished (P < 0.05). In experiment 2, the crops were cultured for 24, 36, and 48 h in medium containing 0, 25, or 50 ng/mL PRL, respectively, and the accumulation of lipid droplets, lipid content, and expression of fatty acid transportation- and lipogenesis-related genes were analyzed. The results showed that the crops with PRL supplements showed higher amounts of lipid droplets than those of the controls, and the droplets were mainly located in the basal nutritive layer in response to PRL. The efficacy of inducing lipid accumulation increased as the concentration of PRL increased. Crops with 50 ng/mL PRL incubated for 36 h displayed the maximal lipid content. Increasing the concentration of PRL from 0 to 50 ng/mL resulted in a dose-dependent increase in the expression of acetyl-CoA carboxylase, fatty acid synthase, fatty acid translocase, fatty acid binding protein 5, acyl-CoA binding protein, and peroxisome proliferator-activated receptor γ genes after incubation for 36 h (P < 0.05). Therefore, our results indicated that the organ-cultured pigeon crops maintained good viability for up to 3 d in vitro. Furthermore, PRL induced the lipid synthesis of organ-cultured pigeon crops in a dose- and time-dependent manner, which was related to the increased expression of genes involved in fatty acid transportation and lipogenesis.
Collapse
Affiliation(s)
- X P Wan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Z Bu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - X T Zou
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Sakamoto T, Hyodo S, Takagi W. A possible principal function of corticosteroid signaling that is conserved in vertebrate evolution: Lessons from receptor-knockout small fish. J Steroid Biochem Mol Biol 2018; 184:57-61. [PMID: 29481854 DOI: 10.1016/j.jsbmb.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Corticosteroid receptors are critical for homeostasis maintenance, but understanding of the principal roles of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) throughout vertebrates is limited. Lines of constitutive GR-knockout zebrafish and MR-knockout medaka have recently been generated as the first adult-viable corticosteroid receptor-knockout animals, in contrast to the lethality of these receptor knockouts in mice. Here, we describe behavioral and physiological modifications following disruption of corticosteroid receptor function in these animal models. We suggest these data point toward a potentially conserved function of corticosteroid receptors in integrating brain-behavior and visual responses in vertebrates. Finally, we discuss how future work in cartilaginous fishes (Chondrichthyes) will further advance understanding of the unity and diversity of corticosteroid receptor function, since distinct orthologs of GR and MR derived from an ancestral corticoid receptor appear in these basal jawed vertebrates.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17, Kashino, Ushimado, Setouchi 701-4303, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
9
|
Katayama Y, Sakamoto T, Takanami K, Takei Y. The Amphibious Mudskipper: A Unique Model Bridging the Gap of Central Actions of Osmoregulatory Hormones Between Terrestrial and Aquatic Vertebrates. Front Physiol 2018; 9:1112. [PMID: 30154735 PMCID: PMC6102947 DOI: 10.3389/fphys.2018.01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Body fluid regulation, or osmoregulation, continues to be a major topic in comparative physiology, and teleost fishes have been the subject of intensive research. Great progress has been made in understanding the osmoregulatory mechanisms including drinking behavior in teleosts and mammals. Mudskipper gobies can bridge the gap from aquatic to terrestrial habitats by their amphibious behavior, but the studies are yet emerging. In this review, we introduce this unique teleost as a model to study osmoregulatory behaviors, particularly amphibious behaviors regulated by the central action of hormones. Regarding drinking behavior of mammals, a thirst sensation is aroused by angiotensin II (Ang II) through direct actions on the forebrain circumventricular structures, which predominantly motivates them to search for water and take it into the mouth for drinking. By contrast, aquatic teleosts can drink water that is constantly present in their mouth only by reflex swallowing, and Ang II induces swallowing by acting on the hindbrain circumventricular organ without inducing thirst. In mudskippers, however, through the loss of buccal water by swallowing, which appears to induce buccal drying on land, Ang II motivates these fishes to move to water for drinking. Thus, mudskippers revealed a unique thirst regulation by sensory detection in the buccal cavity. In addition, the neurohypophysial hormones, isotocin (IT) and vasotocin (VT), promote migration to water via IT receptors in mudskippers. VT is also dipsogenic and the neurons in the forebrain may mediate their thirst. VT regulates social behaviors as well as osmoregulation. The VT-induced migration appears to be a submissive response of subordinate mudskippers to escape from competitive and dehydrating land. Together with implications of VT in aggression, mudskippers may bridge the multiple functions of neurohypophysial hormones. Interestingly, cortisol, an important hormone for seawater adaptation and stress response in teleosts, also stimulates the migration toward water, mediated possibly via the mineralocorticoid receptor. The corticosteroid system that is responsive to external stressors can accelerate emergence of migration to alternative habitats. In this review, we suggest this unique teleost as an important model to deepen insights into the behavioral roles of these hormones in relation to osmoregulation.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Keiko Takanami
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yoshio Takei
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
10
|
Langan LM, Owen SF, Jha AN. Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss. Biol Open 2018. [PMID: 29514825 PMCID: PMC5898270 DOI: 10.1242/bio.032870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel method for the establishment and long-term maintenance of ex vivo cultures from intestinal regions of the rainbow trout, Oncorhynchus mykiss (Walbaum), is reported. Adherence of cells was observed within hours, epithelial island formation recorded at 48 h and rapid proliferation with confluence achieved between 9-14 days. In addition to metabolic characterisation, basic morphology of growing cells was characterised using histology, immunofluorescence, transmission electron microscopy (TEM) and transepithelial electrical resistance (TEER). Regional differences in intestinal ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylation (ECOD) activities in these primary grown enterocytes were compared following exposure to model inducers [i.e. α-NF, β-NF, B(a)P] which demonstrated significant differences. Regional differences in dietary uptake and metabolism of contaminants can therefore be studied in this in vitro system to increase our understanding of fundamental processes, while concurrently providing a means to reduce the number of fish required for biological studies in line with the principles of the 3Rs (Reduce, Refine and Replace). This article has an associated First Person interview with the first author of the paper. Summary: Understanding chemical uptake from the diet is difficult in live fish: we developed long-term intestinal cell cultures that enables the science and provides an alternative method.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
11
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
12
|
Andrade IM, Guimarães JP, Rotundo MM, Mari RB. Morphology of the digestive tract of the Whitemouth croaker Micropogonias furnieri (Desmarest, 1823) (Perciformes: Sciaenidae). ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabel M. Andrade
- Marine Animal Morphology Laboratory at Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus Experimental Litoral Paulista; Praça Dom Infante, s/no 11330-900 São Vicente São Paulo Brazil
| | - Juliana P. Guimarães
- Graduate Studies Program in Coastal and Marine Ecosystem Sustainability; Universidade Santa Cecília; R. Oswaldo Cruz, 266 11045-907 Santos São Paulo Brazil
| | - Matheus M. Rotundo
- Zoology Collection at Universidade Santa Cecília; R. Oswaldo Cruz, 266 11045-907 Santos São Paulo Brazil
| | - Renata B. Mari
- Marine Animal Morphology Laboratory at Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus Experimental Litoral Paulista; Praça Dom Infante, s/no 11330-900 São Vicente São Paulo Brazil
| |
Collapse
|
13
|
Ghosh B, Nowak BF, Bridle AR. Alginate Microencapsulation for Oral Immunisation of Finfish: Release Characteristics, Ex Vivo Intestinal Uptake and In Vivo Administration in Atlantic Salmon, Salmo salar L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:841-853. [PMID: 26410294 DOI: 10.1007/s10126-015-9663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
This study examined the feasibility of alginate microcapsules manufactured using a low-impact technology and reagents to protect orally delivered immunogens for use as immunoprophylactics for fish. Physical characteristics and protein release kinetics of the microcapsules were examined at different pH and temperature levels using a microencapsulated model protein, bovine serum albumin (BSA). Impact of the microencapsulation process on contents was determined by analysing change in bioactivity of microencapsulated lysozyme. Feasibility of the method for oral immunoprophylaxis of finfish was assessed using FITC-labelled microcapsules. These were applied to distal intestinal explants of Atlantic salmon (Salmo salar) to investigate uptake ex vivo. Systemic distribution of microcapsules was investigated by oral administration of FITC-labelled microcapsules to Atlantic salmon fry by incorporating into feed. The microcapsules produced were structurally robust and retained surface integrity, with a modal size distribution of 250-750 nm and a tendency to aggregate. Entrapment efficiency of microencapsulation was 51.2 % for BSA and 43.2 % in the case of lysozyme. Microcapsules demonstrated controlled release of protein, which increased with increasing pH or temperature, and the process had no significant negative effect on bioactivity of lysozyme. Uptake of fluorescent-labelled microcapsules was clearly demonstrated by intestinal explants over a 24-h period. Evidence of microcapsules was found in the intestine, spleen, kidney and liver of fry following oral administration. Amenability of the microcapsules to intestinal uptake and distribution reinforced the strong potential for use of this microencapsulation method in oral immunoprophylaxis of finfish using sensitive immunogenic substances.
Collapse
Affiliation(s)
- Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| |
Collapse
|
14
|
Structural lipid changes and Na + /K + -ATPase activity of gill cells' basolateral membranes during saltwater acclimation in sea lamprey ( Petromyzon marinus , L.) juveniles. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:67-75. [DOI: 10.1016/j.cbpa.2015.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 02/02/2023]
|
15
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
16
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
17
|
Takahashi H, Sakamoto T. The role of 'mineralocorticoids' in teleost fish: relative importance of glucocorticoid signaling in the osmoregulation and 'central' actions of mineralocorticoid receptor. Gen Comp Endocrinol 2013; 181:223-8. [PMID: 23220000 DOI: 10.1016/j.ygcen.2012.11.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
Abstract
It has long been held that cortisol, a glucocorticoid in many vertebrates, performs glucocorticoid and mineralocorticoid actions in the teleost fish since it lacks aldosterone. However, in addition to the counterparts of tetrapod mineralocorticoid receptors (MRs), 11-deoxycorticosterone (DOC) has been recently identified as a specific endogenous ligand for the MRs in teleosts. Here, we point out the minor role of mineralocorticoid signaling (i.e., DOC-MR) in the osmoregulation compared with those of glucocorticoid signaling (i.e., cortisol-glucocorticoid receptor [GR]), and review the current findings on the physiological roles of the DOC-MR in teleosts. Cortisol promotes both freshwater and seawater adaptation via the GRs in the osmoregulatory organs such as gills and gastrointestinal tracts, but the expressions of MR mRNA are abundant in the brains especially in the key components of the stress axis and cerebellums. Together with the behavioral effects of intracerebroventricular injection with DOC, the MR is suggested to play an important role in the brain dependent behaviors. Since the abundant expression of central MRs has been reported also in higher vertebrates and the MR is thought to be ancestral to the GR, the role of MR in fish might reflect the principal and original function of corticosteroid signaling. Functional evolution of corticosteroid systems is summarized and areas in need of research like our on-going experiments with MR-knockout medaka are outlined.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi 701-4303, Japan.
| | | |
Collapse
|
18
|
Dual in vitro effects of cortisol on cell turnover in the medaka esophagus via the glucocorticoid receptor. Life Sci 2011; 88:239-45. [DOI: 10.1016/j.lfs.2010.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 10/19/2010] [Accepted: 11/15/2010] [Indexed: 01/26/2023]
|
19
|
Babitha GS, Peter MCS. Cortisol promotes and integrates the osmotic competence of the organs in North African catfish (Clarias gariepinus Burchell): Evidence from in vivo and in situ approaches. Gen Comp Endocrinol 2010; 168:14-21. [PMID: 20347823 DOI: 10.1016/j.ygcen.2010.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/10/2010] [Accepted: 03/20/2010] [Indexed: 10/19/2022]
Abstract
The short-term in situ and long-term in vivo effects of cortisol were examined in North African catfish (Clarias gariepinus) to identify how this major corticosteroid integrates the osmotic competence of fish organs. In the in situ approach, the hydromineral effects of cortisol perfusion (75-300 ng ml(-1)) for 20 min were tested and the indices of hydromineral and metabolic regulations were measured in our in vivo experimental fish after three alternate intraperitoneal cortisol injections (40 and 200 ng g(-1) body mass) for 5 days. Na(+), K(+)-ATPase activity, a measure of cellular osmotic competence, responded to in situ and in vivo cortisol treatments. In situ cortisol delivery increased the Na(+), K(+)-ATPase activity in the gill (P<0.001) and kidney (P<0.001) but decreased (P<0.01) in the liver and showed no effect on intestine. In vivo cortisol treatment, on the contrary, increased Na(+), K(+)-ATPase activity in the gills (P<0.01), intestine (P<0.05) and liver (P<0.01) but decreased (P<0.05) in the kidney. As expected, plasma cortisol increased (P<0.001) with increasing doses of cortisol injections which produced direct effects on the metabolites and the mineral contents including the elevations of glucose (P<0.05), lactate (P<0.05) and Mg(2+) (P<0.05) and reductions of urea (P<0.05), Na(+) (P<0.05) and K(+) (P<0.05) in the plasma. A decline of triiodothyronine (P<0.01) occurred in the catfish after in vivo cortisol treatment and that implies a direct cortisol action on the homeostatic integration in this fish. Evidence is thus presented that in catfish cortisol regulates the whole body hydromineral and metabolite homeostasis by promoting and integrating the osmotic and metabolic functions of the multiple organ systems including liver.
Collapse
Affiliation(s)
- G S Babitha
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | | |
Collapse
|
20
|
Abstract
Corticosteroid hormones are critical for controlling metabolism, hydromineral balance, and the stress response in vertebrates. Although corticosteroid hormones have been well characterized in most vertebrate groups, the identity of the earliest vertebrate corticosteroid hormone has remained elusive. Here we provide evidence that 11-deoxycortisol is the corticosteroid hormone in the lamprey, a member of the agnathans that evolved more than 500 million years ago. We used RIA, HPLC, and mass spectrometry analysis to determine that 11-deoxycortisol is the active corticosteroid present in lamprey plasma. We also characterized an 11-deoxycortisol receptor extracted from sea lamprey gill cytosol. The receptor was highly specific for 11-deoxycortisol and exhibited corticosteroid binding characteristics, including DNA binding. Furthermore, we observed that 11-deoxycortisol was regulated by the hypothalamus-pituitary axis and responded to acute stress. 11-deoxycortisol implants reduced sex steroid concentrations and up-regulated gill Na+, K+-ATPase, an enzyme critical for ion balance. We show here that 11-deoxycortisol functioned as both a glucocorticoid and a mineralocorticoid in the lamprey. Our findings indicate that a complex and highly specific corticosteroid signaling pathway evolved at least 500 million years ago with the arrival of the earliest vertebrate.
Collapse
|
21
|
Singer T, Keir K, Hinton M, Scott G, McKinley R, Schulte P. Structure and regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in killifish: A comparative genomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:172-85. [DOI: 10.1016/j.cbd.2008.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 01/11/2023]
|
22
|
Veillette PA, Serrano X, Garcia MM, Specker JL. Evidence for the onset of feedback regulation of cortisol in larval summer flounder. Gen Comp Endocrinol 2007; 154:105-10. [PMID: 17645878 DOI: 10.1016/j.ygcen.2007.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 05/14/2007] [Accepted: 05/27/2007] [Indexed: 10/23/2022]
Abstract
We investigated the functional development of feedback regulation of cortisol levels during early development in a marine teleost, summer flounder, using a novel pharmaceutical approach. Larvae were immersed for 4h in the glucocorticoid agonist dexamethasone (20 microM) and/or the glucocorticoid-receptor antagonist RU486 (0.12 microM) at 1, 7, or 21 days after hatching. The hypothesis was that, if feedback regulation were operational, tissue cortisol concentrations would be suppressed by dexamethasone and stimulated by RU486. Whole-body cortisol content of 1-day-old larvae was significantly decreased from 0.32 ng/g body weight (mean) to 0.08-0.12 ng/g by immersion in dexamethasone, RU486, or both, perhaps due to displacement of cortisol from the yolk sac. There were no changes in cortisol content among treatment groups in 7-day-old larvae. The expectations of our hypothesis were met in 21-day-old larvae. Immersion in RU486 increased cortisol content from 0.29 ng/g (control) to 2.00 ng/g, whereas immersion in dexamethasone (with or without RU486) suppressed cortisol to 0.03-0.04 ng/g. The results indicate that a fully functional hypothalamic-pituitary-interrenal axis is established by 3 weeks after yolk-sac resorption, but before the onset of metamorphosis in summer flounder. This is the earliest detection of feedback regulation in a teleost fish.
Collapse
Affiliation(s)
- Philip A Veillette
- Graduate School of Oceanography, University of Rhode Island, 218 South Ferry Road, Narragansett, RI 02882-1197, USA.
| | | | | | | |
Collapse
|
23
|
Veillette PA, Merino M, Marcaccio ND, Garcia MM, Specker JL. Cortisol is necessary for seawater tolerance in larvae of a marine teleost the summer flounder. Gen Comp Endocrinol 2007; 151:116-21. [PMID: 17292366 DOI: 10.1016/j.ygcen.2006.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/22/2006] [Accepted: 12/26/2006] [Indexed: 11/20/2022]
Abstract
Larval-stage summer flounder (Paralichthys dentatus) were immersed in the corticosteroid-receptor blocker RU486 to test the effects of cortisol deficiency on salinity tolerance. Premetamorphic larvae held at 10 (near isosmotic) or 30 (hyperosmotic) parts per thousand ( per thousand) seawater survived well over 5d in 0, 0.012, or 0.12 microM RU486. However, at concentrations of 1.2 or 3.6 microM RU486, mortality was significantly greater for larvae in 30 per thousand compared to larvae in 10 per thousand. In a separate experiment, the ability of RU486 to inhibit tolerance to hyperosmotic medium (30 per thousand) was confirmed; immersion at 1.2 microM RU486 induced mortality of larvae in the metamorphic climax stage held at 30 per thousand, but not 0 or 10 per thousand. Mortality due to RU486 in pre- or prometamorphic stage larvae was prevented by concurrent immersion in cortisol at concentrations approximately 10-200 times greater than RU486, indicating that the action of RU486 was specific to antagonism of cortisol. The efficacy of 1.2 microM RU486 in reducing survival in 30 per thousand was found to be stage-dependent and exhibited the following hierarchy for fastest time to 50% mortality: prometamorphosis>metamorphic climax>premetamorphosis. In a 5-d pretreatment of pre- or prometamorphic larvae by immersion in 20 microM cortisol and/or 0.12 microM RU486 at 30 per thousand, only RU486 had a limited effect on decreasing survival when larvae were challenged with abrupt exposure to 50 per thousand. In total, the results evidence for the first time a necessary role for cortisol in seawater tolerance of a larval marine teleost.
Collapse
Affiliation(s)
- Philip A Veillette
- Graduate School of Oceanography, University of Rhode Island, 218 South Ferry Rd., Narragansett, RI 02882-1197, USA.
| | | | | | | | | |
Collapse
|
24
|
Bernier NJ. The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 2006; 146:45-55. [PMID: 16410007 DOI: 10.1016/j.ygcen.2005.11.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/26/2005] [Indexed: 11/16/2022]
Abstract
A characteristic feature of the behavioural response to intensely acute or chronic stressors is a reduction in appetite. In fish, as in other vertebrates, the corticotropin-releasing factor (CRF) system plays a key role in coordinating the neuroendocrine, autonomic, and behavioural responses to stress. The following review documents the evidence implicating the CRF system as a mediator of the appetite-suppressing effects of stress in fish. Central injections of CRF or the related peptide, urotensin I (UI), or pharmacological treatments or stressors that result in an increase in forebrain CRF and UI gene expression, can elicit dose-dependent reductions in food intake that are at least partially reversed by pre-treatment with a CRF receptor antagonist. In addition, the appetite suppressing effects of various environmental, pathological, physical, and social stressors are associated with elevated levels of forebrain CRF and UI gene expression and with an activation of the hypothalamic-pituitary-interrenal (HPI) stress axis. In contrast, although stressors can also be associated with an increase in caudal neurosecretory system CRF and UI gene expression and an endocrine role for CRF-related peptides has been suggested, the physiological effects of peripheral CRF-related peptides on the gastrointestinal system and in the regulation of appetite have not been investigated. Overall, while CRF and UI appear to participate in the stress-induced changes in feeding behaviour in fish, the role of other know components of the CRF system is not known. Moreover, the extent to which the anorexigenic effects of CRF-related peptides are mediated through the hypothalamic feeding center, the HPI axis and cortisol, or via actions on descending autonomic pathways remains to be investigated.
Collapse
Affiliation(s)
- Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|
25
|
McDonald MD. NOVEL IN VITRO METHOD TO STUDY FISH INTESTINE. J Exp Biol 2005. [DOI: 10.1242/jeb.01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|