1
|
Brown CH, Ludwig M, Tasker JG, Stern JE. Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 2020; 32:e12856. [PMID: 32406599 PMCID: PMC9134751 DOI: 10.1111/jne.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Somato-dendritic secretion was first demonstrated over 30 years ago. However, although its existence has become widely accepted, the function of somato-dendritic secretion is still not completely understood. Hypothalamic magnocellular neurosecretory cells were among the first neuronal phenotypes in which somato-dendritic secretion was demonstrated and are among the neurones for which the functions of somato-dendritic secretion are best characterised. These neurones secrete the neuropeptides, vasopressin and oxytocin, in an orthograde manner from their axons in the posterior pituitary gland into the blood circulation to regulate body fluid balance and reproductive physiology. Retrograde somato-dendritic secretion of vasopressin and oxytocin modulates the activity of the neurones from which they are secreted, as well as the activity of neighbouring populations of neurones, to provide intra- and inter-population signals that coordinate the endocrine and autonomic responses for the control of peripheral physiology. Somato-dendritic vasopressin and oxytocin have also been proposed to act as hormone-like signals in the brain. There is some evidence that somato-dendritic secretion from magnocellular neurosecretory cells modulates the activity of neurones beyond their local environment where there are no vasopressin- or oxytocin-containing axons but, to date, there is no conclusive evidence for, or against, hormone-like signalling throughout the brain, although it is difficult to imagine that the levels of vasopressin found throughout the brain could be underpinned by release from relatively sparse axon terminal fields. The generation of data to resolve this issue remains a priority for the field.
Collapse
Affiliation(s)
- Colin H. Brown
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey G. Tasker
- Department of Cell and Molecular Biology, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
2
|
Lemos JR, Custer EE, Ortiz-Miranda S. Purinergic receptor types in the hypothalamic-neurohypophysial system. J Neuroendocrinol 2018; 30:10.1111/jne.12588. [PMID: 29512852 PMCID: PMC6128781 DOI: 10.1111/jne.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 11/27/2022]
Abstract
Many different types of purinergic receptors are present in the Hypothalamic-Neurohypophysial System (HNS), which synthesizes and releases vasopressin and oxytocin. The specific location of purinergic receptor subtypes has important functional repercussions for neuronal activity and synaptic output. Yet, until the advent of receptor KOs, this had been hindered by the low selectivity of the available pharmacological tools. The HNS offers an excellent opportunity to differentiate the functional properties of these purinergic receptors in cell bodies vs. terminals of the same physiological system. P2X2, P2X3, P2X4 and P2X7 receptors are present in vasopressin terminals while oxytocin terminals exclusively express the P2X7 subtype. The latter is not functional in the cell bodies of the HNS. These purinergic receptor subtypes are permeable to sodium vs. calcium in varying amounts and this could play an important role in the release of vasopressin vs. oxytocin during bursting activity. Endogenous ATP and its metabolite, adenosine, have autocrine and paracrine modulatory effects on the release of these neuropeptides during physiological stimulation. Finally, we hypothesize that during such action potential bursts, ATP potentiates the release of vasopressin but not of oxytocin, and that adenosine, via A1 receptors, inhibits the release of both neuropeptides. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Sonia Ortiz-Miranda
- Neurobiology Depts. & Prog. Neurosci., Univ. Mass. Med. School, Worcester, MA 01605
| |
Collapse
|
3
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
4
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
6
|
Wang YF, Sun MY, Hou Q, Hamilton KA. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 2013; 37:1260-9. [PMID: 23406012 DOI: 10.1111/ejn.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | |
Collapse
|
7
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Oxytocin and vasopressin are synthesized by magnocellular neurosecretory cells in the hypothalamic supraoptic and paraventricular nuclei and are released from the posterior pituitary gland into the circulation. Intravenous administration of the ligand for the G protein-coupled receptor 54 receptor, kisspeptin-10, increases plasma oxytocin levels and intracerebroventricular kisspeptin-10 increases vasopressin levels, indicating that kisspeptin might play a role in various physiological functions via stimulation of oxytocin and vasopressin secretion. Because posterior pituitary hormone secretion is dependent on action potential (spike) discharge, we used in vivo extracellular single unit recording to determine the effects of kisspeptin-10 on supraoptic nucleus neurons in urethane-anaesthetized female rats. Intravenous kisspeptin-10 (100 μg) increased the firing rate of oxytocin neurons from 3.7 ± 0.8 to 4.7 ± 0.8 spikes/sec (P = 0.0004), but only a quarter of vasopressin neurons responded to iv kisspeptin-10, showing a short (<3 sec) high-frequency (>15 spikes/sec) burst of firing. By contrast, intracerebroventricular kisspeptin-10 (2 and 40 μg) did not alter oxytocin or vasopressin neuron firing rate. To investigate the pathway involved in the peripheral action of kisspeptin-10, we used i.p. capsaicin to desensitize vagal afferents, which prevented the i.v. kisspeptin-10-induced increase of oxytocin neuron firing rate. This is the first report to show that peripheral, but not central, kisspeptin-10 increases the activity of oxytocin neurons and a proportion of vasopressin neurons and that endogenous kisspeptin regulation of supraoptic nucleus neurons is likely via vagal afferent input, with kisspeptin acting as a hormone rather than as a neuropeptide in this system.
Collapse
Affiliation(s)
- Victoria Scott
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
9
|
Apamin increases post-spike excitability of supraoptic nucleus neurons in anaesthetized morphine-naïve rats and morphine-dependent rats: consequences for morphine withdrawal excitation. Exp Brain Res 2011; 212:517-28. [DOI: 10.1007/s00221-011-2759-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/31/2011] [Indexed: 12/14/2022]
|
10
|
Ruan M, Russell JA, Brown CH. Acute morphine administration and withdrawal from chronic morphine increase afterdepolarization amplitude in rat supraoptic nucleus neurons in hypothalamic explants. Neuropharmacology 2011; 61:789-97. [PMID: 21645529 DOI: 10.1016/j.neuropharm.2011.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 11/18/2022]
Abstract
Supraoptic nucleus (SON) neurons secrete either oxytocin or vasopressin into the bloodstream from their axon terminals in the posterior pituitary gland. SON neurons are powerfully inhibited by the classical μ-opioid receptor agonist, morphine. Oxytocin neurons develop morphine dependence when chronically exposed to this opiate, and undergo robust withdrawal excitation when morphine is subsequently acutely antagonized by naloxone. Morphine withdrawal excitation is evident as an increased firing rate and is associated with an increased post-spike excitability that is consistent with the expression of an enhanced post-spike afterdepolarization (ADP) during withdrawal. Here, we used sharp electrode recording from SON neurons in hypothalamic explants from morphine naïve and morphine treated rats to determine the effects of morphine on the ADP, and to test the hypothesis that morphine withdrawal increases ADP amplitude in SON neurons. Acute morphine administration (0.05-5.0 μM) caused a dose-dependent hyperpolarization of SON neurons that was reversed by concomitant administration of 10 μM naloxone, or by washout of morphine; counter-intuitively, acute exposure to 5 μM morphine increased ADP amplitude by 78 ± 11% (mean ± SEM). Naloxone-precipitated morphine withdrawal did not alter baseline membrane potential in SON neurons from morphine treated rats, but increased ADP amplitude by 48 ± 11%; this represents a hyper-activation of ADPs because the basal amplitude of the ADP was similar in SON neurons recorded from explants prepared from morphine naïve and morphine treated rats. Hence, an enhanced ADP might contribute to morphine withdrawal excitation of oxytocin neurons.
Collapse
Affiliation(s)
- Ming Ruan
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
11
|
Iremonger KJ, Benediktsson AM, Bains JS. Glutamatergic synaptic transmission in neuroendocrine cells: Basic principles and mechanisms of plasticity. Front Neuroendocrinol 2010; 31:296-306. [PMID: 20347860 DOI: 10.1016/j.yfrne.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/27/2022]
Abstract
Glutamate synapses drive the output of neuroendocrine cells in the hypothalamus, but until recently, relatively little was known about the fundamental properties of transmission at these synapses. Here we review recent advances in the understanding of glutamate signals in magnocellular neurosecretory cells (MNCs) in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus that serve as the last step in synaptic integration before neurohormone release. While these synapses exhibit many similarities with other glutamate synapses described throughout the brain, they also exhibit a number of unique properties that are particularly well suited to the physiology of this system and will be discussed here. In addition, a number of recent studies begin to provide insights into new forms of synaptic plasticity that may be common in other brain regions, but in these cells, may serve important adaptive roles.
Collapse
Affiliation(s)
- Karl J Iremonger
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | |
Collapse
|
12
|
Scott V, Brown CH. State-dependent plasticity in vasopressin neurones: dehydration-induced changes in activity patterning. J Neuroendocrinol 2010; 22:343-54. [PMID: 20088912 DOI: 10.1111/j.1365-2826.2010.01961.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Moderate dehydration impairs concentration and co-ordination, whereas severe dehydration can cause seizures, brain damage or death. To slow the progression of dehydration until body fluids can be replenished by drinking, the increased body fluid osmolality associated with dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland. Increased vasopressin secretion reduces water loss in the urine by promoting water reabsorption in the collecting ducts of the kidney. Vasopressin secretion is largely determined by action potential discharge in vasopressin neurones, and depends on both the rate and pattern of discharge. Vasopressin neurone activity depends on intrinsic and extrinsic mechanisms. We review recent advances in our understanding of the physiological regulation of vasopressin neurone activity patterning and the mechanisms by which this is altered to cope with the increased secretory demands of dehydration.
Collapse
Affiliation(s)
- V Scott
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
13
|
Ohbuchi T, Yokoyama T, Fujihara H, Suzuki H, Ueta Y. Electrophysiological identification of the functional presynaptic nerve terminals on an isolated single vasopressin neurone of the rat supraoptic nucleus. J Neuroendocrinol 2010; 22:413-9. [PMID: 20163519 DOI: 10.1111/j.1365-2826.2010.01979.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Release of arginine vasopressin (AVP) and oxytocin from magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) is under the control of glutamate-dependent excitation and GABA-dependent inhibition. The possible role of the synaptic terminals attached to SON neurones has been investigated using whole-cell patch-clamp recording in in vitro rat brain slice preparations. Recent evidence has provided new insights into the repercussions of glial environment modifications on the physiology of MNCs at the synaptic level in the SON. In the present study, excitatory glutamatergic and inhibitory GABAergic synaptic inputs were recorded from an isolated single SON neurone cultured for 12 h, using the whole-cell patch clamp technique. Neurones expressed an AVP-enhanced green fluorescent protein (eGFP) fusion gene in MNCs. In addition, native synaptic terminals attached to a dissociated AVP-eGFP neurone were visualised with synaptic vesicle markers. These results suggest that the function of presynaptic nerve terminals may be evaluated directly in a single AVP-eGFP neurone. These preparations would be helpful in future studies aiming to electrophysiologically distinguish between the functions of synaptic terminals and glial modifications in the SON neurones.
Collapse
Affiliation(s)
- T Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | |
Collapse
|
14
|
Klement G, Druzin M, Haage D, Malinina E, Arhem P, Johansson S. Spontaneous ryanodine-receptor-dependent Ca2+-activated K+ currents and hyperpolarizations in rat medial preoptic neurons. J Neurophysiol 2010; 103:2900-11. [PMID: 20457857 DOI: 10.1152/jn.00566.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to clarify the identity of slow spontaneous currents, the underlying mechanism and possible role for impulse generation in neurons of the rat medial preoptic nucleus (MPN). Acutely dissociated neurons were studied with the perforated patch-clamp technique. Spontaneous outward currents, at a frequency of approximately 0.5 Hz and with a decay time constant of approximately 200 ms, were frequently detected in neurons when voltage-clamped between approximately -70 and -30 mV. The dependence on extracellular K(+) concentration was consistent with K(+) as the main charge carrier. We concluded that the main characteristics were similar to those of spontaneous miniature outward currents (SMOCs), previously reported mainly for muscle fibers and peripheral nerve. From the dependence on voltage and from a pharmacological analysis, we concluded that the currents were carried through small-conductance Ca(2+)-activated (SK) channels, of the SK3 subtype. From experiments with ryanodine, xestospongin C, and caffeine, we concluded that the spontaneous currents were triggered by Ca(2+) release from intracellular stores via ryanodine receptor channels. An apparent voltage dependence was explained by masking of the spontaneous currents as a consequence of steady SK-channel activation at membrane potentials > -30 mV. Under current-clamp conditions, corresponding transient hyperpolarizations occasionally exceeded 10 mV in amplitude and reduced the frequency of spontaneous impulses. In conclusion, MPN neurons display spontaneous hyperpolarizations triggered by Ca(2+) release via ryanodine receptors and SK3-channel activation. Thus such events may affect impulse firing of MPN neurons.
Collapse
Affiliation(s)
- Göran Klement
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Ruan M, Brown CH. Feedback inhibition of action potential discharge by endogenous adenosine enhancement of the medium afterhyperpolarization. J Physiol 2009; 587:1043-56. [PMID: 19139041 DOI: 10.1113/jphysiol.2008.167239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phasic activity in supraoptic nucleus vasopressin neurones is characterized by alternating periods of activity (bursts) and silence. During bursts, activation of a medium afterhyperpolarization induces spike frequency adaptation. Antagonism of A1 adenosine receptors within the supraoptic nucleus decreases spike frequency adaptation and prolongs phasic bursts in vivo, indicating that endogenous adenosine contributes to spike frequency adaptation. Here we used sharp electrode intracellular recordings from supraoptic nucleus neurones in hypothalamic explants to show that endogenous adenosine increases medium afterhyperpolarization amplitude to enhance spike frequency adaptation during phasic bursts. Superfusion of the A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT, 10 microM) increased intraburst firing rate of phasic neurones (by 2.0 +/- 0.7 spikes s(-1), P = 0.03) and burst duration (by 141 +/- 113 s, P = 0.03). The CPT-induced increase in intraburst firing rate developed over the first few seconds of firing and persisted thereafter. In a separate series of experiments, CPT reduced the amplitude of the medium afterhyperpolarization evoked by a 1 s 20 Hz spike train (by 0.8 +/- 0.3 mV, P < 0.001) in supraoptic nucleus neurones; this inhibition was not prevented by 3 mM CsCl (0.8 +/- 0.1 mV decrease, P < 0.01) to block the afterdepolarization (which overlaps temporally with the medium afterhyperpolarization). In the presence of apamin to block the medium afterhyperpolarization, CPT did not alter afterdepolarization amplitude. Taken together, these data show that endogenous adenosine enhances medium afterhyperpolarization amplitude to contribute to spike frequency adaptation in phasic supraoptic nucleus neurones.
Collapse
Affiliation(s)
- Ming Ruan
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|