1
|
Verzicco I, Tedeschi S, Graiani G, Bongrani A, Carnevali ML, Dancelli S, Zappa J, Mattei S, Bovino A, Cavazzini S, Rocco R, Calvi A, Palladini B, Volpi R, Cannone V, Coghi P, Borghetti A, Cabassi A. Evidence for a Prehypertensive Water Dysregulation Affecting the Development of Hypertension: Results of Very Early Treatment of Vasopressin V1 and V2 Antagonism in Spontaneously Hypertensive Rats. Front Cardiovasc Med 2022; 9:897244. [PMID: 35722114 PMCID: PMC9198251 DOI: 10.3389/fcvm.2022.897244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to long-term regulation of blood pressure (BP), in the kidney resides the initial trigger for hypertension development due to an altered capacity to excrete sodium and water. Betaine is one of the major organic osmolytes, and its betaine/gamma-aminobutyric acid transporter (BGT-1) expression in the renal medulla relates to interstitial tonicity and urinary osmolality and volume. This study investigated altered water and sodium balance as well as changes in antidiuretic hormone (ADH) activity in female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats from their 3–5 weeks of age (prehypertensive phase) to SHR’s 28–30 weeks of age (established hypertension-organ damage). Young prehypertensive SHRs showed a reduced daily urine output, an elevated urine osmolarity, and higher immunostaining of tubule BGT-1, alpha-1-Na-K ATPase in the outer medulla vs. age-matched WKY. ADH circulating levels were not different between young prehypertensive SHR and WKY, but the urine aquaporin2 (AQP2)/creatinine ratio and labeling of AQP2 in the collecting duct were increased. At 28–30 weeks, hypertensive SHR with moderate renal failure did not show any difference in urinary osmolarity, urine AQP2/creatinine ratio, tubule BGT-1, and alpha-1-Na-K ATPase as compared with WKY. These results suggest an increased sensitivity to ADH in prehypertensive female SHR. On this basis, a second series of experiments were set to study the role of ADH V1 and V2 receptors in the development of hypertension, and a group of female prehypertensive SHRs were treated from the 25th to 49th day of age with either V1 (OPC21268) or V2 (OPC 41061) receptor antagonists to evaluate the BP time course. OPC 41061-treated SHRs had a delayed development of hypertension for 5 weeks without effect in OPC 21268-treated SHRs. In prehypertensive female SHR, an increased renal ADH sensitivity is crucial for the development of hypertension by favoring a positive water balance. Early treatment with selective V2 antagonism delays future hypertension development in young SHRs.
Collapse
Affiliation(s)
- Ignazio Verzicco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Stefano Tedeschi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Gallia Graiani
- Histology and Histopathology Unit and Molecular Biology Laboratory, Dental School Parma, University of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Maria Luisa Carnevali
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Simona Dancelli
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Jessica Zappa
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Silvia Mattei
- Nefrologia e Dialisi, Azienda USL – Istituto di Ricerca a Carattere Scientifico IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Achiropita Bovino
- Internal Medicine Unit, Ospedale Fidenza, Azienda USL Parma, Parma, Italy
| | - Stefania Cavazzini
- Laboratory of Industrial Toxicology, DIMEC, University of Parma, Parma, Italy
| | - Rossana Rocco
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Anna Calvi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Barbara Palladini
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Riccardo Volpi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Valentina Cannone
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Pietro Coghi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Alberico Borghetti
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
| | - Aderville Cabassi
- Cardiorenal and Hypertension Research Unit, Physiopathology Unit, Clinica Medica Generale e Terapia Medica, Department of Medicine and Surgery (DIMEC), University of Parma, Parma, Italy
- *Correspondence: Aderville Cabassi,
| |
Collapse
|
2
|
Correia AG, Bergström G, Jia J, Anderson WP, Evans RG. Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressure in rabbits and rats. J Physiol 2002; 538:901-10. [PMID: 11826173 PMCID: PMC2290088 DOI: 10.1113/jphysiol.2001.013280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasing renal artery pressure (RAP) activates pressure diuresis/natriuresis and inhibits renal renin release. There is also evidence that increasing RAP stimulates release of a putative depressor hormone from the renal medulla, although this hypothesis remains controversial. We examined the relative roles of these antihypertensive mechanisms in the acute depressor responses to increased RAP in anaesthetized rabbits and rats. In rabbits, an extracorporeal circuit was established which allows RAP to be set and controlled without direct effects on systemic haemodynamics. When RAP was maintained at approximately 65 mmHg, cardiac output (CO) and mean arterial pressure (MAP) did not change significantly. In contrast, when RAP was increased to approximately 160 mmHg, CO and MAP fell 20 +/- 5 % and 36 +/- 5 %, respectively, over 30 min. Urine flow also increased more than 28-fold when RAP was increased. When compound sodium lactate was infused intravenously at a rate equal to urine flow, neither CO nor MAP fell significantly in response to increased RAP. In 1 kidney-1 clip hypertensive rats, MAP fell by 54 +/- 10 mmHg over a 2 h period after unclipping. In rats in which isotonic NaCl was administered intravenously at a rate equal to urine flow, MAP did not change significantly after unclipping (-14 +/- 9 mmHg). Our results suggest that the depressor responses to increasing RAP in these experimental models are chiefly attributable to hypovolaemia secondary to pressure diuresis/natruresis. These models therefore appear not to be bioassays for release of a putative renal medullary depressor hormone.
Collapse
|
3
|
Denton KM, Anderson WP, Sinniah R. Effects of angiotensin II on regional afferent and efferent arteriole dimensions and the glomerular pole. Am J Physiol Regul Integr Comp Physiol 2000; 279:R629-38. [PMID: 10938254 DOI: 10.1152/ajpregu.2000.279.2.r629] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diversity of renal arteriole diameters in different cortical regions has important consequences for control of glomerular capillary pressure. We examined whether intrarenal angiotensin II (ANG II; 0.1, 1, or 5 ng. kg(-1). min(-1)) in anesthetized rabbits acts preferentially on pre- or postglomerular vessels using vascular casting. ANG II produced dose-related reductions in afferent and efferent diameters in the outer, mid, and inner cortex, without effecting arterial pressure. Afferent diameter decreased more than efferent in the outer and mid cortex (P < 0.05) but by a similar extent in juxtamedullary nephrons (P = 0.58). Calculated efferent resistance increased more than afferent, especially in the outer cortex (127 vs. 24 units; 5 ng. kg(-1). min(-1) ANG II). ANG II produced significant dose-related increases in the distance between the arterioles at the entrance to the glomerular pole in all regions. Thus afferent diameter decreased more in response to ANG II, but efferent resistance rose more due to smaller resting luminal dimensions. The results also indicate that glomerular pole dimensions change in response to ANG II.
Collapse
Affiliation(s)
- K M Denton
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | |
Collapse
|