1
|
Kołodziejski PA, Leciejewska N, Sassek M, Nogowski L, Szumacher-Strabel M, Mikuła R, Gogulski M, Pruszyńska-Oszmałek E. Isolation method and characterization of adipocytes as a tool for equine obesity research - In vitro study. Vet J 2025; 312:106354. [PMID: 40204088 DOI: 10.1016/j.tvjl.2025.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Adipose tissue functions as an endocrine organ; however, excessive lipid accumulation can lead to obesity and metabolic disorders, such as Equine Metabolic Syndrome (EMS), characterized by insulin resistance, fat deposition, and increased inflammation. Despite the growing prevalence of obesity in horses, knowledge of equine adipocytes and their metabolic functions remains limited. The main objective of the study was to develop and optimize a method for isolating equine adipocytes and to characterize their metabolic activity. Using slaughterhouse-derived horse visceral adipose tissue, we developed a protocol to isolate mature adipocytes. Metabolic activity of cells was assessed by examining their sensitivity to lipolytic factors: isoproterenol (0.001-10 µM), epinephrine (0.001-1 µM), and forskolin (0.001-1 µM)-and lipogenesis intensity after stimulation with insulin. We obtained mature equine adipocytes with diameters ranging from 50 to 160 µm. These cells demonstrated full metabolic functionality, responding to lipolytic factors such as isoproterenol (all doses: p < 0.001), epinephrine (0.01 µM: p < 0.05; 0.1-1 µM: p < 0.0001), and forskolin (0.001 µM: p < 0.0001). The adipocytes also responded to insulin from all tested species, with effects being dose- and time-dependent (after 2 h human insulin 10 nM, p < 0.05; bovine 10, 100 nM p < 0.05 and after 8 h all doses p < 0.05). The presented method for isolating mature equine adipocytes is effective, yielding metabolically functional cells, which can serve as a valuable in vitro model for studying the effects of various factors on adipocyte function, contributing to a better understanding of equine adipose tissue dysfunction, particularly in the context of metabolic disorders.
Collapse
Affiliation(s)
- Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland.
| | - Natalia Leciejewska
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland
| | | | - Robert Mikuła
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, Poznan 60-637, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan 60-637, Poland.
| |
Collapse
|
2
|
Moss E, Cardinal R, Yin Y, Pagé P. Biatrial neuroablation attenuates atrial remodeling and vulnerability to atrial fibrillation in canine chronic rapid atrial pacing. Auton Neurosci 2015; 189:43-9. [PMID: 25746009 DOI: 10.1016/j.autneu.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/24/2014] [Accepted: 02/17/2015] [Indexed: 11/26/2022]
Abstract
AIMS We investigated the proposition that an intact cardiac nervous system may contribute to electrophysiological remodeling and increased vulnerability to atrial fibrillation (AF) following chronic rapid atrial pacing (RAP). METHODS AND RESULTS Baseline study was conducted prior to ablating right and left ganglionated plexuses (RAGP, LAGP) in 11 anesthetized canines (Neuroablation group) and in 11 canines without neuroablation (Intact GP). After being subjected to RAP (400 beats/min) for 6 weeks, animals were reanesthetized for terminal study. The ERP shortening typical of chronic RAP was significantly more pronounced in the Intact GP (baseline: 112 ± 12 to terminal: 80 ± 11 ms) than in the Neuroablation group (113 ± 18 to 102 ± 21 ms, p < .001), and AF inducibility (extrastimulus protocol) showed significantly greater increment in the Intact GP (baseline: 23 ± 19% to terminal: 60 ± 17% of trials) than in the Neuroablation group (18 ± 15% to 27 ± 17%, p = 0.029). Negative chronotropic responses to right vagus nerve stimulation were markedly reduced immediately after the neuroablation procedure but had recovered at terminal study. Vagally-evoked repolarization changes (from 191 unipolar electrograms) occurred in a majority of Intact GP animals in the superior, middle and inferior RA free wall, and in the LA appendage. In the Neuroablation group, repolarization changes were restricted to the superior RA free wall but none occurred in the inferior RA and only infrequently in the LA appendage, yielding significantly smaller affected areas in Neuroablation than in Intact GP animals. CONCLUSION Persistent functional denervation in LA and RA regions other than RA pacemaker areas may contribute to prevent the development of a tachycardia-dependent AF substrate.
Collapse
Affiliation(s)
- Emmanuel Moss
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Surgery, Université de Montréal, Montreal, Canada
| | - René Cardinal
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montreal, Canada
| | - Yalin Yin
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Pierre Pagé
- Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada; Department of Surgery, Université de Montréal, Montreal, Canada.
| |
Collapse
|
3
|
Falcao S, Rousseau G, Baroudi G, Vermeulen M, Bouchard C, Jones DL, Cardinal R. Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium. Pflugers Arch 2007; 454:999-1009. [PMID: 17534653 DOI: 10.1007/s00424-007-0266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
To show that reductions in connexin43 (Cx43) can contribute, in association with electrophysiological alterations identified from unipolar recordings, to conduction disturbances in a realistic model of heart failure, canines were subjected to chronic rapid pacing (240/min for 4 weeks) and progressive occlusion of the left coronary circumflex artery (LCx) by an ameroid constrictor. Alterations identified from 191 epicardial recordings included abrupt activation delay, functional block, ST segment potential elevation, and reduced maximum negative slope (-dV/dt (max)). The LCx territory was divided into apical areas with depressed conduction velocity (LCx1: 0.06 +/- 0.04 m/s, mean +/- SD) and basal areas with relatively preserved conduction (LCx2: 0.28 +/- 0.01 m/s). Subepicardial Cx43 immunoblot measurements (percent of corresponding healthy heart measurements) were reduced in LCx1 ( approximately 40%) and LCx2 ( approximately 60%). In addition, -dV/dt (max) was significantly depressed (-3.8 +/- 3.3 mV/ms) and ST segment potential elevated (23.3 +/- 14.6 mV) in LCx1 compared to LCx2 (-9.5 +/- 3.4 mV/ms and 0.3 +/- 1.4 mV). Anisotropic conduction, Cx43 and ST segment potential measurements from the left anterior descending coronary artery territory, and interstitial collagen from all regions were similar to the healthy. Thus, moderate Cx43 reduction to "clinically relevant" levels can, in conjunction with regional energetic stress and depression of sarcolemmal active generator properties, provide a substrate for conduction disturbances.
Collapse
Affiliation(s)
- Stéphanie Falcao
- Centre de recherche, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin Blvd. West, Montréal, H4J 1C5, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Cheng G, Qiao F, Gallien TN, Kuppuswamy D, Cooper G. Inhibition of beta-adrenergic receptor trafficking in adult cardiocytes by MAP4 decoration of microtubules. Am J Physiol Heart Circ Physiol 2004; 288:H1193-202. [PMID: 15528234 DOI: 10.1152/ajpheart.00109.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.
Collapse
Affiliation(s)
- Guangmao Cheng
- Gazes Cardiac Research Institute, Cardiology Division, Medical University of South Carolina, and Department of Veterans Affairs Medical Center, Charleston, South Carolina 29403, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.
Collapse
Affiliation(s)
- J Andrew Armour
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Montreal, Québec, H3C 3J7 Canada.
| |
Collapse
|
6
|
Cardinal R, Rousseau G, Bouchard C, Vermeulen M, Latour JG, Pagé PL. Myocardial electrical alteration in canine preparations with combined chronic rapid pacing and progressive coronary artery occlusion. Am J Physiol Heart Circ Physiol 2004; 286:H1496-506. [PMID: 14693684 DOI: 10.1152/ajpheart.00679.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to create an animal preparation displaying long-term electrical alterations after chronic regional energetic stress without myocardial scarring. An Ameroid (AM) constrictor was implanted around the left circumflex coronary artery (LCx) 2 wk before chronic rapid ventricular pacing (CRP) was initiated at 240 beats/min for 4 wk (CRP-AM). Comparisons were made with healthy canines and canines with either AM or CRP. Unipolar electrograms were recorded from 191 sites in the LCx territory in open-chest, anesthetized animals during sinus rhythm and while pacing at 120–150 beats/min, with bouts of transient rapid pacing (TRP; 240/min). In CRP-AM and AM, ST segment elevation was identified at central sites and ST depression at peripheral sites, both increasing with TRP. In CRP-AM and CRP, the maximum negative slope of unipolar activation complexes was significantly depressed and activation-recovery intervals prolonged. Areas of inexcitability as well as irregular isocontour patterns displaying localized activation-recovery intervals shortening and gradients >20 ms between neighboring sites were identified in one-third of CRP-AM at slow rate, with increasing incidence and magnitude in response to TRP. In CRP-AM, programmed stimulation-induced marked conduction delay and block as well as polymorphic ventricular tachycardias, which stabilized into monomorphic tachycardias with the use of lidocaine or procainamide. Whole cell Na+ current and channel protein expression were reduced in CRP-AM and CRP. Despite complete constrictor closure, small areas of necrosis were detected in a minority of CRP-AM. Long-term electrical alterations and their exacerbation by TRP contribute to arrhythmia formation in collateral-dependent myocardium subjected to chronic tachycardic stress.
Collapse
Affiliation(s)
- René Cardinal
- Department of Pharmacology, Université de Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada H4J 1C5.
| | | | | | | | | | | |
Collapse
|
7
|
Arora RC, Cardinal R, Smith FM, Ardell JL, Dell'Italia LJ, Armour JA. Intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1212-23. [PMID: 12893651 DOI: 10.1152/ajpregu.00131.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.
Collapse
Affiliation(s)
- Rakesh C Arora
- Centre de Recherche, Hôpital du Sacré-coeur, 5400 Boulevard Gouin ouest, Montréal, QC, Canada H4J 1C5
| | | | | | | | | | | |
Collapse
|
8
|
Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 2003; 100:11406-11. [PMID: 13679574 PMCID: PMC208770 DOI: 10.1073/pnas.1936664100] [Citation(s) in RCA: 411] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is becoming increasingly clear that signaling via G protein-coupled receptors is a diverse phenomenon involving receptor interaction with a variety of signaling partners. Despite this diversity, receptor ligands are commonly classified only according to their ability to modify G protein-dependent signaling. Here we show that beta2AR ligands like ICI118551 and propranolol, which are inverse agonists for Gs-stimulated adenylyl cyclase, induce partial agonist responses for the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) 1/2 thus behaving as dual efficacy ligands. ERK1/2 activation by dual efficacy ligands was not affected by ADP-ribosylation of Galphai and could be observed in S49-cyc- cells lacking Galphas indicating that, unlike the conventional agonist isoproterenol, these drugs induce ERK1/2 activation in a Gs/i-independent manner. In contrast, this activation was inhibited by a dominant negative mutant of beta-arrestin and was abolished in mouse embryonic fibroblasts lacking beta-arrestin 1 and 2. The role of beta-arrestin was further confirmed by showing that transfection of beta-arrestin 2 in these knockout cells restored ICI118551 promoted ERK1/2 activation. ICI118551 and propranolol also promoted beta-arrestin recruitment to the receptor. Taken together, these observations suggest that beta-arrestin recruitment is not an exclusive property of agonists, and that ligands classically classified as inverse agonists rely exclusively on beta-arrestin for their positive signaling activity. This phenomenon is not unique to beta2-adrenergic ligands because SR121463B, an inverse agonist on the V2 vasopressin receptor-stimulated adenylyl cyclase, recruited beta-arrestin and stimulated ERK1/2. These results point to a multistate model of receptor activation in which ligand-specific conformations are capable of differentially activating distinct signaling partners.
Collapse
Affiliation(s)
- Mounia Azzi
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
9
|
Cerbai E, De Paoli P, Sartiani L, Lonardo G, Mugelli A. Treatment with irbesartan counteracts the functional remodeling of ventricular myocytes from hypertensive rats. J Cardiovasc Pharmacol 2003; 41:804-12. [PMID: 12717113 DOI: 10.1097/00005344-200305000-00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in electrophysiological (action potential prolongation, decrease in transient outward current I(to), occurrence of the hyperpolarization-activated current I(f)) and contractile properties develop in hypertrophied ventricular myocytes, likely implicated in the increased propensity to arrhythmias. Angiotensin II is a key signal for myocyte hypertrophy; the effect of 8-week treatment with irbesartan, a type 1 angiotensin II receptor (AT(1)) antagonist, on cardiac remodeling was tested. Sixteen-month-old hypertensive rats (SHRs) were treated with irbesartan (20 mg/kg/d) or saline for 8 weeks. At the end of treatment, systolic blood pressure and heart weight to body weight ratio were reduced in irbesartan-treated compared with nontreated SHRs. Electrical and contractile properties were measured in isolated ventricular myocytes, by patch-clamp or video-dimension analysis, respectively. Action potential duration was significantly shorter in irbesartan-treated than in nontreated SHRs (at -60 mV: 119 +/- 24 ms vs 187 +/- 20 ms); correspondingly, maximal I(to) density was larger in irbesartan-treated than in nontreated SHRs (25.4 +/- 2.8 pA/pF vs 18.5 +/- 1.5 pA/pF). Maximal specific conductance of I(f) was lower in irbesartan-treated vs nontreated SHRs (24.8 +/- 3.0 pS/pF vs 35.2 +/- 4.0 pS/pF). Finally, the relaxation rate of shortening in field-stimulated intact myocytes was significantly faster in irbesartan-treated than in nontreated SHRs (7.3 +/- 0.5/s vs 5.7 +/- 0.3/s). Thus, AT(1) blockade with irbesartan, at an oral daily dosage that gave a slight but significant reduction of systolic blood pressure, largely counteracts the development of myocyte hypertrophy and associated functional alterations.
Collapse
Affiliation(s)
- Elisabetta Cerbai
- Inter-University Center for Molecular Medicine, Department of Preclinical Pharmacology, University of Firenze, Italy
| | | | | | | | | |
Collapse
|