1
|
Ghaddhab C, Vuissoz JM, Deladoëy J. From Bioinactive ACTH to ACTH Antagonist: The Clinical Perspective. Front Endocrinol (Lausanne) 2017; 8:17. [PMID: 28228747 PMCID: PMC5296294 DOI: 10.3389/fendo.2017.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
The adrenocorticotropic hormone (ACTH) is a pituitary hormone derived from a larger peptide, the proopiomelanocortin (POMC), as are the MSHs (α-MSH, β-MSH, and γ-MSH) and the β-LPH-related polypeptides (Figure 1A). ACTH drives adrenal steroidogenesis and growth of the adrenal gland. ACTH is a 39 amino acid polypeptide that binds and activates its cognate receptor [melanocortin receptor 2 (MC2R)] through the two regions H6F7R8W9 and K15K16R17R18P19. Most POMC-derived polypeptides contain the H6F7R8W9 sequence that is conserved through evolution. This explains the difficulties in developing selective agonists or antagonists to the MCRs. In this review, we will discuss the clinical aspects of the role of ACTH in physiology and disease, and potential clinical use of selective ACTH antagonists.
Collapse
Affiliation(s)
- Chiraz Ghaddhab
- Endocrinology Service and Research Center, Sainte-Justine University Hospital Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Vuissoz
- Division of Pediatric Endocrinology, University Children’s Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Johnny Deladoëy
- Endocrinology Service and Research Center, Sainte-Justine University Hospital Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Johnny Deladoëy,
| |
Collapse
|
2
|
Cai M, Hruby VJ. The Melanocortin Receptor System: A Target for Multiple Degenerative Diseases. Curr Protein Pept Sci 2016; 17:488-96. [PMID: 26916163 DOI: 10.2174/1389203717666160226145330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/28/2016] [Accepted: 01/08/2016] [Indexed: 01/10/2023]
Abstract
The melanocortin receptor system consists of five closely related G-protein coupled receptors (MC1R, MC2R, MC3R, MC4R and MC5R). These receptors are involved in many of the key biological functions for multicellular animals, including human beings. The natural agonist ligands for these receptors are derived by processing of a primordial animal gene product, proopiomelanocortin (POMC). The ligand for the MC2R is ACTH (Adrenal Corticotropic Hormone), a larger processed peptide from POMC. The natural ligands for the other 4 melanocortin receptors are smaller peptides including α-melanocyte stimulating hormone (α-MSH) and related peptides from POMC (β-MSH and γ-MSH). They all contain the sequence His-Phe-Arg-Trp that is conserved throughout evolution. Thus, there has been considerable difficulty in developing highly selective ligands for the MC1R, MC3R, MC4R and MC5R. In this brief review, we discuss the various approaches that have been taken to design agonist and antagonist analogues and derivatives of the POMC peptides that are selective for the MC1R, MC3R, MC4R and MC5R receptors, via peptide, nonpeptide and peptidomimetic derivatives and analogues and their differential interactions with receptors that may help account for these selectivities.
Collapse
Affiliation(s)
| | - Victor J Hruby
- Department of Chemistry & Biochemistry, University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA.
| |
Collapse
|
3
|
Yang Y, Chen M, McPherson D, Mishra V, Harmon CM. Structural insight into the role of the human melanocortin 3 receptor cysteine residues on receptor function. Peptides 2011; 32:2377-83. [PMID: 22079958 PMCID: PMC3242444 DOI: 10.1016/j.peptides.2011.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 11/19/2022]
Abstract
Melanocortin-3 receptor (MC3R), expressed in the hypothalamus and limbic systems of the brain, as well as by peripheral sites, plays an important role in the regulation of energy homeostasis and other physiological functions. Past work shows that MC3R-deficiency resulted in fat mass increase, feeding efficiency increase, hyperleptinemia and mild hyperinsulinemia in mice and human. MC3R belongs to G-protein coupled receptor (GPCR) family and many studies indicate that some cysteine residues in GPCR play key roles in maintaining receptor tertiary structure and function. In this study, we examined the role of cysteine residues in MC3R on receptor function. Human MC3R (hMC3R) has eighteen cysteine residues where they are located in the extracellular loops (ELs), the transmembrane domains (TMs) and the intracellular loops (ILs). We replaced these cysteines with serine and expressed these receptors in HEK-293 cells which lack endogenous MC3R. Our results indicate that five cysteines in eighteen of the hMC3R are important for hMC3R function. Mutations, C305S, C311S, and C313S in EL3, resulted in significant decrease in receptor expression and receptor function while two other mutations C115S and C162S in TM3 significantly decreased NDP-MSH binding affinity and potency. These results suggest that extracellular cysteine residue 305, 311 and 313 are crucial for receptor expression and the transmembrane cysteine residue, C115 and 162 are important for ligand binding and signaling. These findings provide important insights into the importance of cysteine residues of hMC3R on receptor tertiary structure and function.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
4
|
Chai B, Li JY, Zhang W, Wang H, Mulholland MW. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling. Peptides 2009; 30:1098-104. [PMID: 19463742 PMCID: PMC2687409 DOI: 10.1016/j.peptides.2009.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 12/18/2022]
Abstract
The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1(ser307) phosphorylation, effects also reversed by a specific melanocortin receptor antagonist. NDP-MSH augmented insulin-stimulated AKT phosphorylation in vitro. The melanocortin agonist melanotan II increased insulin-stimulated AKT phosphorylation in the rat hypothalamus in vivo. NDP-MSH increased insulin-stimulated glucose uptake in hypothalamic GT1-1 cells. The current study shows that the melanocortinergic system interacts with insulin signaling via novel effects on JNK activity.
Collapse
Affiliation(s)
| | | | | | | | - Michael W. Mulholland
- Corresponding Author: Michael W. Mulholland, M.D., Ph.D., 2101 Taubman Center, 1500 E. Medical Center Dr. Ann Arbor, MI 48109-0346, Tel.: +1 734 936 3236; fax: +1 734 763 5625,
| |
Collapse
|
5
|
Contribution of the transmembrane domain 6 of melanocortin-4 receptor to peptide [Pro5, DNal (2')8]-gamma-MSH selectivity. Biochem Pharmacol 2008; 77:114-24. [PMID: 18930713 DOI: 10.1016/j.bcp.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 01/11/2023]
Abstract
The melanocortin receptor (MCR) subtype family is a member of the GPCR superfamily and each of them has a different pharmacological profile regarding the relative potency of the endogenous and synthetic melanocortin peptides. Substitution of Trp with DNal (2') in gamma-MSH resulted in the loss of binding affinity and potency at hMC4R. However, the molecular mechanism of this ligand selectivity is unclear. In this study, we utilized chimeric receptors and site-directed mutagenesis approaches to investigate the molecular basis of MC4R responsible for peptide [Pro5, DNal (2')8]-gamma-MSH selectivity. Cassette substitutions of the second, third, fourth, fifth, and sixth TM of the human MC4R (hMC4R) with the homologous regions of hMC1R were constructed and the binding affinity of peptide [Pro5, DNal (2')8]-gamma-MSH at these chimeric receptors was evaluated. Our results indicate that the cassette substitutions of TM2, TM3, TM4 and TM5 of hMC4R with homologous regions of the hMC1R did not significantly increase peptide [Pro5, DNal (2')8]-gamma-MSH binding affinity and potency but substitution of the TM6 of the hMC4R with the same region of the hMC1R significantly enhances [Pro5, DNal (2')8]-gamma-MSH binding affinity and potency. Further site-directed mutagenesis study indicates that four amino acid residues, Phe267, Tyr268, Ile269 and Ser270, in TM6 of the hMC4R may play an important role in [Pro5, DNal (2')-gamma-MSH selective activity at MC4R.
Collapse
|
6
|
Chen M, Cai M, Aprahamian CJ, Georgeson KE, Hruby V, Harmon CM, Yang Y. Contribution of the conserved amino acids of the melanocortin-4 receptor in [corrected] [Nle4,D-Phe7]-alpha-melanocyte-stimulating [corrected] hormone binding and signaling. J Biol Chem 2007; 282:21712-9. [PMID: 17545153 PMCID: PMC2704061 DOI: 10.1074/jbc.m702285200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanocortin 4 receptor (MC4R) plays an important role in the regulation of food intake and body weight. To determine the molecular basis of human MC4R (hMC4R) responsible for alpha-melanocortin-stimulating hormone (alpha-MSH) binding, in this study, we utilized both receptor domain exchange and site-directed mutagenesis studies to investigate the molecular determinants of hMC4R responsible for alpha-MSH binding and signaling. alpha-MSH is a potent agonist at hMC4R but not at hMC2R. Cassette substitutions of the second, third, fourth, fifth, and sixth transmembrane regions (TM) of the hMC4R with the homologous regions of hMC2R were performed and alpha-MSH binding and signaling were examined. Our results indicate that each chimeric receptor was expressed at the cell surface and the expression levels remain similar to that of the wild-type receptor. The cassette substitutions of the second, fourth, fifth, and sixth TMs of the hMC4R with homologous regions of the hMC2R did not significantly alter alpha-MSH binding affinity and potency except substitution of the TM3 of the hMC4R, suggesting that the conserved residues in TMs of the hMC4R are crucial for alpha-MSH binding and signaling. Further mutagenesis studies indicate that conserved residues Glu(100) in TM2, Asp(122), Asp(126) in TM3 and Trp(258), Phe(261), His(264) in TM6 are involved in alpha-MSH binding and signaling. In conclusion, our results suggest that the conserved residues in the TM2, TM3, and TM6 of the hMC4R are responsible for alpha-MSH binding and signaling.
Collapse
Affiliation(s)
- Min Chen
- Department of Surgery and Nutrition, University of Alabama, Birmingham, AL 35205, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Chai B, Li JY, Zhang W, Ammori JB, Mulholland MW. Melanocortin-3 receptor activates MAP kinase via PI3 kinase. ACTA ACUST UNITED AC 2006; 139:115-21. [PMID: 17188372 DOI: 10.1016/j.regpep.2006.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
HEK 293 cells stably expressing human melanocortin-3 receptor (MC3R) were exposed to melanocortin receptor agonist, NDP-MSH (10(-)(10)-10(-)(6) M). ERK1/2 was phosphorylated in a dose-dependent manner with an EC(50) of 3.3+/-1.5 x 10(-)(9) M, similar to the IC(50) of NDP-MSH binding to the MC3R. ERK1/2 phosphorylation was blocked by the melanocortin receptor antagonists SHU9119. NDP-MSH-induced ERK1/2 phosphorylation was sensitive to pertussis toxin and the PI3K inhibitor, wortmannin. Rp-cAMPS, BAPTA-AM and Myr-PKC did not inhibit the NDP-MSH-induced ERK1/2 phosphorylation. NDP-MSH stimulated cellular proliferation in a dose-dependent manner with a similar EC(50) to ERK1/2 phosphorylation, 2.1+/-0.6 x 10(-)(9) M. Cellular proliferation was blocked by AGRP (86-132) and by the MEK inhibitor, PD98059. The NDP-MSH did not inhibit serum deprivation-induced apoptosis. MC3R activation induces ERK1/2 phosphorylation via PI3K and this pathway is involved in cellular proliferation in HEK cells expressing MC3R.
Collapse
Affiliation(s)
- Biaoxin Chai
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
8
|
McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, Barsh GS, Dawson PE, Millhauser GL. Structures of the agouti signaling protein. J Mol Biol 2005; 346:1059-70. [PMID: 15701517 DOI: 10.1016/j.jmb.2004.12.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 10/26/2022]
Abstract
Expression of the agouti signaling protein (ASIP) during hair growth produces the red/yellow pigment pheomelanin. ASIP, and its neuropeptide homolog the agouti-related protein (AgRP) involved in energy balance, are novel, paracrine signaling molecules that act as inverse agonists at distinct subsets of melanocortin receptors. Ubiquitous ASIP expression in mice gives rise to a pleiotropic phenotype characterized by a uniform yellow coat color, obesity, overgrowth, and metabolic derangements similar to type II diabetes in humans. Here we report the synthesis and NMR structure of ASIP's active, cysteine-rich, C-terminal domain. ASIP adopts the inhibitor cystine knot fold and, along with AgRP, are the only known mammalian proteins in this structure class. Moreover, ASIP populates two distinct conformers resulting from a cis peptide bond at Pro102-Pro103 and a coexistence of cis/trans isomers of Ala104-Pro105. Pharmacologic studies of Pro-->Ala mutants demonstrate that the minor conformation with two cis peptide bonds is responsible for activity at all MCRs. The loop containing the heterogeneous Ala-Pro peptide bond is conserved in mammals, and suggests that ASIP is either trapped by evolution in this unusual configuration or possesses function outside of strict MCR antagonism.
Collapse
Affiliation(s)
- Joseph C McNulty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Obesity has become one of the most significant public health problems facing the world today. However, the pathogenesis of obesity is multifactorial and involves the interaction of genetic and environmental factors. There is a pressing need to better understand the biochemical pathways that control energy intake and expenditure. In the last few years, a number of important signalling molecules have been identified that play important roles in obesity. One family of these molecules is the melanocortin system, which consists of several components: (1) melanocortin peptides; (2) the five seven-transmembrane G-protein coupled melanocortin receptors (MCRs); (3) the endogenous MCR antagonists, agouti and agouti-related protein; (4) the endogenous melanocortin mediators, mahogany, and syndecan. This system plays a key role in the central nervous system control of feeding behaviour and energy expenditure. This article will provide an overview of the anatomy, physiology, and molecular biology of the melanocortin system, and recent developments in our understanding of this system in obesity.
Collapse
Affiliation(s)
- Y K Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | |
Collapse
|
10
|
Affiliation(s)
- W A Cupples
- Lady Davis Institute, SMBD-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|