1
|
Mancuso C. The Heme Oxygenase/Biliverdin Reductase System and Its Genetic Variants in Physiology and Diseases. Antioxidants (Basel) 2025; 14:187. [PMID: 40002374 PMCID: PMC11852105 DOI: 10.3390/antiox14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, constitutive and committed to the physiologic turnover of heme and in the intracellular oxygen sensing. Many studies have identified genetic variants of the HO/BVR system and suggested their connection in free radical-induced diseases. The most common genetic variants include (GT)n dinucleotide length polymorphisms and single nucleotide polymorphisms. Gain-of-function mutations in the HO-1 and HO-2 genes foster the ventilator response to hypoxia and reduce the risk of coronary heart disease and age-related macular degeneration but increase the risk of neonatal jaundice, sickle cell disease, and Parkinson's disease. Conversely, loss-of-function mutations in the HO-1 gene increase the risk of type 2 diabetes mellitus, chronic obstructive pulmonary disease, and some types of cancers. Regarding BVR, the reported loss-of-function mutations increase the risk of green jaundice. Unfortunately, the physiological role of the HO/BVR system does not allow for the hypothesis gene silencing/induction strategies, but knowledge of these mutations can certainly facilitate a medical approach that enables early diagnoses and tailored treatments.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 1, 00168 Rome, Italy;
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Abstract
How oxygen is sensed by the heart and what mechanisms mediate its sensing remain poorly understood. Since recent reports show that low PO2 levels are detected by the cardiomyocytes in a few seconds, the rapid and short applications of low levels of oxygen (acute hypoxia), that avoid multiple effects of chronic hypoxia may be used to probe the oxygen sensing pathway of the heart. Here we explore the oxygen sensing pathway, focusing primarily on cellular surface membrane proteins that are first exposed to low PO2. Such studies suggest that acute hypoxia primarily targets the cardiac calcium channels, where either the channel itself or moieties closely associated with it, for instance, heme-oxygenase-2 (HO-2) interacting through kinase phosphorylation, signals the α-subunit of the channel as to the altered levels of PO2. Amino acids 1572-1651, the CaMKII phosphorylation sites (S1487 and S1545), CaM-binding site (I1624, Q1625) and Ser1928 of the carboxyl tail of the α-subunit appear to be critical residues that sense oxygen. Future studies in HO-2 knockout mice or CRISPR/Cas9 gene-edited hiPSC-CMs that reduce CaM-binding affinity are likely to provide deeper insights in the O2-sensinsing mechanisms.
Collapse
Affiliation(s)
| | - Martin Morad
- USC, MUSC, and Clemson University, Cardiac Signaling Center, Charleston, South Carolina, United States;
| |
Collapse
|
4
|
Postnatal changes in O2 and CO2 sensitivity in rodents. Respir Physiol Neurobiol 2020; 272:103313. [DOI: 10.1016/j.resp.2019.103313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
5
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
6
|
Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J. Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 2018; 41:4985474. [PMID: 29697839 PMCID: PMC6047438 DOI: 10.1093/sleep/zsy072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Study Objectives Based on the fact that erythropoietin (Epo) administration in rodents protects against spatial learning and cognitive deficits induced by chronic intermittent hypoxia (CIH)-mediated oxidative damage, here we tested the hypothesis that Epo in the brain protects against cardiorespiratory disorders and oxidative stress induced by CIH in adult mice. Methods Adult control and transgenic mice overexpressing Epo in the brain only (Tg21) were exposed to CIH (21%-10% O2-10 cycles/hour-8 hours/day-7 days) or room air. After CIH exposure, we used the tail cuff method to measure arterial pressure, and whole-body plethysmography to assess the frequency of apneic episodes at rest, minute ventilation, and ventilatory responses to hypoxia and hypercapnia. Finally, the activity of pro-oxidant (XO-xanthine oxidase, and NADPH) and antioxidant (super oxide dismutase) enzymes was evaluated in the cerebral cortex and brainstem. Results Exposure of control mice to CIH significantly increased the heart rate and arterial pressure, the number of apneic events, and the ventilatory response to hypoxia and hypercapnia. Furthermore, CIH increased the ratio of pro-oxidant to antioxidant enzymes in cortex and brainstem tissues. Both physiological and molecular changes induced by CIH were prevented in transgenic Tg21 mice. Conclusions We conclude that the neuroprotective effect of Epo prevents oxidative damage in the brain and cardiorespiratory disorders induced by CIH. Considering that Epo is used in clinics to treat chronic kidney disease and stroke, our data show convincing evidence suggesting that Epo may be a promising alternative drug to treat sleep-disorder breathing.
Collapse
Affiliation(s)
- Elizabeth Elliot-Portal
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Tara Adele Janes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
7
|
Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, Ang R, Mastitskaya S, Sheikhbahaei S, Theparambil SM, Gourine AV. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 2018; 66:1185-1199. [PMID: 29274121 PMCID: PMC5947829 DOI: 10.1002/glia.23283] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.
Collapse
Affiliation(s)
- Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
- Research Department of Metabolism and Experimental Therapeutics, Division of MedicineUniversity College LondonLondonWC1E 6JJUnited Kingdom
| | - Egor Turovsky
- Laboratory of Intracellular SignallingInstitute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shahriar Sheikhbahaei
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
8
|
Diekman CO, Thomas PJ, Wilson CG. Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. J Neurophysiol 2017; 118:2194-2215. [PMID: 28724778 DOI: 10.1152/jn.00170.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
How sensory information influences the dynamics of rhythm generation varies across systems, and general principles for understanding this aspect of motor control are lacking. Determining the origin of respiratory rhythm generation is challenging because the mechanisms in a central circuit considered in isolation may be different from those in the intact organism. We analyze a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. We show that 1) embedding the BRS model neuron in a control loop creates a bistable system; 2) although closed-loop and open-loop (isolated) CPG systems both support eupnea-like bursting activity, they do so via distinct mechanisms; 3) chemosensory feedback in the closed loop improves robustness to variable metabolic demand; 4) the BRS model conductances provide an autoresuscitation mechanism for recovery from transient interruption of chemosensory feedback; and 5) the in vitro brain stem CPG slice responds to hypoxia with transient bursting that is qualitatively similar to in silico autoresuscitation. Bistability of bursting and tonic spiking in the closed-loop system corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level and a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. Disruption of the normal breathing rhythm, through either imposition of hypoxia or interruption of chemosensory feedback, can push the system from the eupneic state into the tachypneic state. We use geometric singular perturbation theory to analyze the system dynamics at the boundary separating eupnea-like and tachypnea-like outcomes.NEW & NOTEWORTHY A common challenge facing rhythmic biological processes is the adaptive regulation of central pattern generator (CPG) activity in response to sensory feedback. We apply dynamical systems tools to understand several properties of a closed-loop respiratory control model, including the coexistence of normal and pathological breathing, robustness to changes in metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct mechanisms that underlie rhythmogenesis in the intact control circuit vs. the isolated, open-loop CPG.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; .,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, New Jersey
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Department of Biology, Department of Cognitive Science, and Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio
| | - Christopher G Wilson
- Lawrence D. Longo Center for Perinatal Biology, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, California; and
| |
Collapse
|
9
|
Gourine AV, Funk GD. On the existence of a central respiratory oxygen sensor. J Appl Physiol (1985) 2017; 123:1344-1349. [PMID: 28522760 DOI: 10.1152/japplphysiol.00194.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
A commonly held view that dominates both the scientific and educational literature is that in terrestrial mammals the central nervous system lacks a physiological hypoxia sensor capable of triggering increases in lung ventilation in response to decreases in Po2 of the brain parenchyma. Indeed, a normocapnic hypoxic ventilatory response has never been observed in humans following bilateral resection of the carotid bodies. In contrast, almost complete or partial recovery of the hypoxic ventilatory response after denervation/removal of the peripheral respiratory oxygen chemoreceptors has been demonstrated in many experimental animals when assessed in an awake state. In this essay we review the experimental evidence obtained using in vitro and in vivo animal models, results of human studies, and discuss potential mechanisms underlying the effects of CNS hypoxia on breathing. We consider experimental limitations and discuss potential reasons why the recovery of the hypoxic ventilatory response has not been observed in humans. We review recent experimental evidence suggesting that the lower brain stem contains functional oxygen sensitive elements capable of stimulating respiratory activity independently of peripheral chemoreceptor input.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; and
| | - Gregory D Funk
- Department of Physiology, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
McBryde FD, Malpas SC, Paton JFR. Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiol (Oxf) 2017; 219:274-287. [PMID: 27172364 DOI: 10.1111/apha.12706] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022]
Abstract
The brain is an exceptionally energetically demanding organ with little metabolic reserve, and multiple systems operate to protect and preserve the brain blood supply. But how does the brain sense its own perfusion? In this review, we discuss how the brain may harness the cardiovascular system to counter threats to cerebral perfusion sensed via intracranial pressure (ICP), cerebral oxygenation and ischaemia. Since the work of Cushing over 100 years ago, the existence of brain baroreceptors capable of eliciting increases in sympathetic outflow and blood pressure has been hypothesized. In the clinic, this response has generally been thought to occur only in extremis, to perfuse the severely ischaemic brain as cerebral autoregulation fails. We review evidence that pressor responses may also occur with smaller, physiologically relevant increases in ICP. The incoming brain oxygen supply is closely monitored by the carotid chemoreceptors; however, hypoxia and other markers of ischaemia are also sensed intrinsically by astrocytes or other support cells within brain tissue itself and elicit reactive hyperaemia. Recent studies suggest that astrocytic oxygen signalling within the brainstem may directly affect sympathetic nerve activity and blood pressure. We speculate that local cerebral oxygen tension is a major determinant of the mean level of arterial pressure and discuss recent evidence that this may be the case. We conclude that intrinsic intra- and extra-cranial mechanisms sense and integrate information about hypoxia/ischaemia and ICP and play a major role in determining the long-term level of sympathetic outflow and arterial pressure, to optimize cerebral perfusion.
Collapse
Affiliation(s)
- F. D. McBryde
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
- School of Physiology, Pharmacology & Neuroscience; Biomedical Sciences; University of Bristol; Bristol UK
| | - S. C. Malpas
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - J. F. R. Paton
- Department of Physiology; Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
- School of Physiology, Pharmacology & Neuroscience; Biomedical Sciences; University of Bristol; Bristol UK
| |
Collapse
|
11
|
Sunderram J, Semmlow J, Patel P, Rao H, Chun G, Agarwala P, Bhaumik M, Le-Hoang O, Lu SE, Neubauer JA. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic intermittent hypoxia in mice. J Appl Physiol (1985) 2016; 121:944-952. [PMID: 27609199 DOI: 10.1152/japplphysiol.00036.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) increases sympathetic tone and respiratory instability. Our previous work showed that chronic hypoxia induces the oxygen-sensing enzyme heme oxygenase-1 (HO-1) within the C1 sympathoexcitatory region and the pre-Bötzinger complex (pre-BötC). We therefore examined the effect of CIH on time course of induced expression of HO-1 within these regions and determined whether the induction of HO-1 correlated with changes in respiratory, sigh frequency, and sympathetic responses (spectral analysis of heart rate) to acute hypoxia (10% O2) during 10 days of exposure to CIH in chronically instrumented awake wild-type (WT) and HO-1 null mice (HO-1-/-). HO-1 was induced within the C1 and pre-BötC regions after 1 day of CIH. There were no significant differences in the baseline respiratory parameters between WT and HO-1-/- Prior to CIH, acute hypoxia increased respiratory frequency in both WT and HO-1-/-; however, minute diaphragm electromyogram activity increased in WT but not HO-1-/- The hypoxic respiratory response after 1 and 10 days of CIH was restored in HO-1-/- CIH resulted in an initial significant decline in 1) the hypoxic sigh frequency response, which was restored in WT but not HO-1-/-, and 2) the baseline sympathetic activity in WT and HO-1-/-, which remained stable subsequently in WT but not in HO-1-/- We conclude that 1) CIH induces expression of HO-1 in the C1 and pre-BötC regions within 1 day and 2) HO-1 is necessary for hypoxia respiratory response and contributes to the maintenance of the hypoxic sigh responses and baseline sympathetic activity during CIH.
Collapse
Affiliation(s)
- Jag Sunderram
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey;
| | - John Semmlow
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Pranav Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Harshit Rao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Glen Chun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Priya Agarwala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Mantu Bhaumik
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Oanh Le-Hoang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Shou-En Lu
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, New Jersey
| | - Judith A Neubauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
12
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Abstract
In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation.
Collapse
|
14
|
Landry JP, Hawkins C, Lee A, Coté A, Balaban E, Pompeiano M. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals. Dev Neurobiol 2015; 76:64-74. [DOI: 10.1002/dneu.22299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jeremy P. Landry
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| | - Connor Hawkins
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| | - Aaron Lee
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| | - Alexandra Coté
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| | - Evan Balaban
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| | - Maria Pompeiano
- Department of Psychology; McGill University; Montreal Quebec Canada H3A 1B1
| |
Collapse
|
15
|
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:604981. [PMID: 25136403 PMCID: PMC4127239 DOI: 10.1155/2014/604981] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.
Collapse
Affiliation(s)
- Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| |
Collapse
|
16
|
Koganezawa T, Paton JFR. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats. Exp Physiol 2014; 99:1453-66. [PMID: 25016023 DOI: 10.1113/expphysiol.2014.080069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Brainstem hypoperfusion is a major excitant of sympathetic activity triggering hypertension, but the exact mechanisms involved remain incompletely understood. A major source of excitatory drive to preganglionic sympathetic neurons originates from the ongoing activity of premotor neurons in the rostral ventrolateral medulla (RVLM sympathetic premotor neurons). The chemosensitivity profile of physiologically characterized RVLM sympathetic premotor neurons during hypoxia and hypercapnia remains unclear. We examined whether physiologically characterized RVLM sympathetic premotor neurons can sense brainstem ischaemia intrinsically. We addressed this issue in a unique in situ arterially perfused preparation before and after a complete blockade of fast excitatory and inhibitory synaptic transmission. During hypercapnic hypoxia, respiratory modulation of RVLM sympathetic premotor neurons was lost, but tonic firing of most RVLM sympathetic premotor neurons was elevated. After blockade of fast excitatory and inhibitory synaptic transmission, RVLM sympathetic premotor neurons continued to fire and exhibited an excitatory firing response to hypoxia but not hypercapnia. This study suggests that RVLM sympathetic premotor neurons can sustain high levels of neuronal discharge when oxygen is scarce. The intrinsic ability of RVLM sympathetic premotor neurons to maintain responsivity to brainstem hypoxia is an important mechanism ensuring adequate arterial pressure, essential for maintaining cerebral perfusion in the face of depressed ventilation and/or high cerebral vascular resistance.
Collapse
Affiliation(s)
- Tadachika Koganezawa
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
17
|
Chan EC, Dusting GJ, Liu GS, Jiang F. Redox mechanisms of the beneficial effects of heme oxygenase in hypertension. J Hypertens 2014; 32:1379-86; discussion 1387. [DOI: 10.1097/hjh.0000000000000179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Scaringi JA, Rosa AO, Morad M, Cleemann L. A new method to detect rapid oxygen changes around cells: how quickly do calcium channels sense oxygen in cardiomyocytes? J Appl Physiol (1985) 2013; 115:1855-61. [PMID: 24157525 DOI: 10.1152/japplphysiol.00770.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute hypoxia is thought to trigger protective responses that, in tissues like heart and carotid body, include rapid (5-10 s) suppression of Ca(2+) and K(+) channels. To gain insight into the mechanism for the suppression of the cardiac l-type Ca(2+) channel, we measured O2-dependent fluorescence in the immediate vicinity of voltage-clamped cardiac cells subjected to rapid exchange of solutions with different O2 tensions. This was accomplished with an experimental chamber with a glass bottom that was used as a light guide for excitation of a thin ruthenium-based O2-sensitive ORMOSIL coating. Fluorescence imaging showed that steady-state Po2 was well controlled within the entire stream from an electromagnetically controlled solution "puffer" but that changes were slower at the periphery of the stream (τ1/2 ∼ 500 ms) than immediately around the voltage-clamped myocyte (τ1/2 ∼ 225 ms) where, in turn, firmly attached cells produced an additional local delay of 50-100 ms. Performing simultaneous voltage clamp and O2 measurements, we found that acute hypoxia gradually and reversibly suppressed the Ca(2+) channel (CaV1.2). Using Ba(2+) as charge carrier, the suppression was significant after 1.5 s, reached ∼10% after 2.5 s, and was nearly completely reversible in 5 s. The described fluorescence measurements provide the means to check and fine tune solution puffers and suggest that changes in Po2 can be accomplished within ∼200 ms. The rapid and reversible suppression of barium current under hypoxia is consistent with the notion that the cardiac Ca(2+) channel is directly modulated by O2.
Collapse
Affiliation(s)
- John A Scaringi
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | | | | | | |
Collapse
|
19
|
Rosa AO, Movafagh S, Cleemann L, Morad M. Hypoxic regulation of cardiac Ca2+ channel: possible role of haem oxygenase. J Physiol 2012; 590:4223-37. [PMID: 22753548 DOI: 10.1113/jphysiol.2012.236570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute and chronic hypoxias are common cardiac diseases that lead often to arrhythmia and impaired contractility. At the cellular level it is unclear whether the suppression of cardiac Ca(2+) channels (Ca(V)1.2) results directly from oxygen deprivation on the channel protein or is mediated by intermediary proteins affecting the channel. To address this question we measured the early effects of hypoxia (5-60 s, P(O(2)) < 5 mmHg) on Ca(2+) current (I(Ca)) and tested the involvement of protein kinase A (PKA) phosphorylation, Ca(2+)/calmodulin-mediated signalling and the haem oxygenase (HO) pathway in the hypoxic regulation of Ca(V)1.2 in rat and cat ventricular myocytes and HEK-293 cells. Hypoxic suppression of ICa) and Ca(2+) transients was significant within 5 s and intensified in the following 50 s, and was reversible. Phosphorylation by cAMP or the phosphatase inhibitor okadaic acid desensitized I(Ca) to hypoxia, while PKA inhibition by H-89 restored the sensitivity of I(Ca) to hypoxia. This phosphorylation effect was specific to Ca(2+), but not Ba(2+) or Na(+), permeating through the channel. CaMKII inhibitory peptide and Bay K8644 reversed the phosphorylation-induced desensitization to hypoxia. Mutation of CAM/CaMKII-binding motifs of the α(1c) subunit of Ca(V)1.2 fully desensitized the Ca(2+) channel to hypoxia. Rapid application of HO inhibitors (zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP)) suppressed the channel in a manner similar to acute hypoxia such that: (1) I(Ca) and I(Ba) were suppressed within 5 s of ZnPP application; (2) PKA activation and CaMKII inhibitors desensitized I(Ca), but not I(Ba), to ZnPP; and (3) hypoxia failed to further suppress I(Ca) and I(Ba) in ZnPP-treated myocytes. We propose that the binding of HO to the CaM/CaMKII-specific motifs on Ca(2+) channel may mediate the rapid response of the channel to hypoxia.
Collapse
Affiliation(s)
- Angelo O Rosa
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29245, USA
| | | | | | | |
Collapse
|
20
|
Neubauer JA, Sunderram J. Heme oxygenase-1 and chronic hypoxia. Respir Physiol Neurobiol 2012; 184:178-85. [PMID: 22750196 DOI: 10.1016/j.resp.2012.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 01/09/2023]
Abstract
A myriad of changes are necessary to adapt to chronic hypoxemia. Key among these changes increases in arterial oxygen carrying capacity, ventilation and sympathetic activity. This requires the induction of several gene products many of which are regulated by the activity of HIF-1α, including HO-1. Induction of HO-1 during chronic hypoxia is necessary for the continued breakdown of heme for the enhanced production of hemoglobin and the increased respiratory and sympathetic responses. Several human HO-1 polymorphisms have been identified that can affect the expression or activity of HO-1. Associations between these polymorphisms and the prevalence of hypertension have recently been assessed in specific populations. There are major gaps in our understanding of the mechanisms of how HO-1 mediates changes in the activity of the hypoxia-sensitive chemosensors and whether HO-1 polymorphisms are an important factor in the integrated response to chronic hypoxia. Understanding how HO-1 mediates cardiorespiratory responses could provide important insights into clinical syndromes such as obstructive sleep apnea.
Collapse
Affiliation(s)
- Judith A Neubauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | |
Collapse
|
21
|
Chen L, Zhang J, He Y, Pan J, Zhou H, Li H, Tang Y, Zheng Y. Contribution of BK(Ca) channels of neurons in rostral ventrolateral medulla to CO-mediated central regulation of respiratory rhythm in medullary slices of neonatal rats. Respir Physiol Neurobiol 2012; 182:93-9. [PMID: 22633934 DOI: 10.1016/j.resp.2012.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/12/2012] [Accepted: 05/06/2012] [Indexed: 10/28/2022]
Abstract
We recently described that carbon monoxide (CO) participated in the regulation of rhythmic respiration in medullary slices. The present study was undertaken to further assess whether the large-conductance calcium-activated potassium channels (BK(Ca) channels) are involved in the CO-mediated central regulation of respiratory rhythm in medullary slices. The rhythmic discharge of hypoglossal rootlets of medullary slices of neonatal rats was recorded. We observed that blocking BK(Ca) channels could partially abolish the effects of CO on the rhythmic bursts of hypoglossal rootlets. With whole-cell patch-clamp recording technique, we further observed that CO could reversibly augment potassium current density of the neurons in the rostral ventrolateral medulla. The CO-induced increase in potassium current was entirely blocked by the pretreatment of slices with BK(Ca) channels blocker; whereas blockade of CO generation with zinc protoporphyrin-IX produced an opposite response. Altogether, these data indicate that BK(Ca) channels of the neurons in neonatal rostral ventrolateral medulla could be activated by CO and involved in CO-mediated central regulation of respiratory rhythm in medullary slices.
Collapse
Affiliation(s)
- Li Chen
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Obstructive sleep apnea (OSA) is characterized by episodes of repeated airway obstruction resulting in cessation (apnea) or reduction (hypopnea) in airflow during sleep. These events lead to intermittent hypoxia and hypercapnia, sleep fragmentation, and changes in intrathoracic pressure, and are associated with a marked surge in sympathetic activity and an abrupt increase in blood pressure. Blood pressure remains elevated during wakefulness despite the absence of obstructive events resulting in a high prevalence of hypertension in patients with OSA. There is substantial evidence that suggests that chronic intermittent hypoxia (CIH) leads to sustained sympathoexcitation during the day and changes in vasculature resulting in hypertension in patients with OSA. Mechanisms of sympathoexcitation include augmentation of peripheral chemoreflex sensitivity and a direct effect on central sites of sympathetic regulation. Interestingly, the vascular changes that occur with CIH have been ascribed to the same molecules that have been implicated in the augmented sympathetic tone in CIH. This review will discuss the hypothesized molecular mechanisms involved in the development of hypertension with CIH, will build a conceptual model for the development of hypertension following CIH, and will propose a systems biology approach in further elucidating the relationship between CIH and the development of hypertension.
Collapse
Affiliation(s)
- Jag Sunderram
- UMDNJ- Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
23
|
Cates MJ, Steed PW, Abdala APL, Langton PD, Paton JFR. Elevated vertebrobasilar artery resistance in neonatal spontaneously hypertensive rats. J Appl Physiol (1985) 2011; 111:149-56. [PMID: 21493719 PMCID: PMC3137540 DOI: 10.1152/japplphysiol.00220.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023] Open
Abstract
There is a strong correlation between increased vertebral artery resistance and arterial blood pressure in humans. The reasons for this increased resistance at high systemic pressure remain unknown, but may include raised sympathetic activity. With the recent finding that prehypertensive spontaneously hypertensive (PHSH) rats, which have raised sympathetic nerve activity, but a blood pressure comparable to normotensive rat strains, we hypothesized that its vertebrobasilar vascular resistance would already be raised and, as a consequence, would exhibit a more responsive Cushing response (e.g., brain ischemia evoked sympathoexcitation and a pressor response). We report that PHSH rats exhibited a remodeling of the basilar artery (i.e., increased wall thickness and lower lumen-to-wall thickness ratio) that occurred before the onset of hypertension. In a novel in vitro vascularly isolated, arterially perfused brain stem preparation of PHSH rats of 4-5 wk of age, brain stem vascular resistance was raised by ∼35% relative to age- and sex-matched normotensive rats (P < 0.05). In the in situ arterial perfused working heart-brain stem preparation, occlusion of both vertebral arteries in the PHSH rat resulted in a significantly greater increase in sympathetic activity (57 vs. 20%, PHSH vs. control; P < 0.01) that triggered a greater increase in arterial perfusion pressure (8 vs. 3 mmHg, PHSH vs. control; P < 0.01) compared with normotensive rats. These data indicate raised vertebrobasilar artery resistance before the onset of hypertension in the PHSH rat. With the raised responsiveness of the Cushing response in the PHSH rat, we discuss the possibility of brain stem perfusion as a central nervous system determinant of the set point of vasomotor sympathetic tone in the hypertensive condition.
Collapse
Affiliation(s)
- Matthew J Cates
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Bldg., University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
24
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
25
|
Wang Y, Li Y, Dalle Lucca SL, Simovic M, Tsokos GC, Dalle Lucca JJ. Decay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury. J Neuroinflammation 2010; 7:24. [PMID: 20380727 PMCID: PMC2867804 DOI: 10.1186/1742-2094-7-24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/09/2010] [Indexed: 12/02/2022] Open
Abstract
Background Activated complement system is known to mediate neuroinflammation and neurodegeneration following exposure to hypoxic-ischemic insults. Therefore, inhibition of the complement activation cascade may represent a potential therapeutic strategy for the management of ischemic brain injury. Decay-accelerating factor (DAF, also known as CD55) inhibits complement activation by suppressing the function of C3/C5 convertases, thereby limiting local generation or deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured neuronal cells subjected to sodium cyanide (NaCN)-induced hypoxia from degeneration and apoptosis. Methods Cultured primary cortical neurons from embryonic Sprague-Dawley rats were assigned one of four groups: control, DAF treatment alone, hypoxic, or hypoxic treated with DAF. Hypoxic cultures were exposed to NaCN for 1 hour, rinsed, followed by 24 hour exposure to 200 ng/ml of recombinant human DAF in normal medium. Human DAF was used in the present study and it has been shown to effectively regulate complement activation in rats. Neuronal cell function, morphology and viability were investigated by measuring plateau depolarization potential, counting the number dendritic spines, and observing TUNEL and MTT assays. Complement C3, C3a, C3a receptor (R) production, C3a-C3aR interaction and MAC formation were assessed along with the generation of activated caspase-9, activated caspase-3, and activated Src. Results When compared to controls, hypoxic cells had fewer dendritic spines, reduced plateau depolarization accompanied by increased apoptotic activity and accumulation of MAC, as well as up-regulation of C3, C3a and C3aR, enhancement of C3a-C3aR engagement, and elevated caspase and Src activity. Treatment of hypoxic cells with 200 ng/ml of recombinant human DAF resulted in attenuation of neuronal apoptosis and exerted significant protection against neuronal dendritic spine loss and plateau depolarization reduction. Furthermore, treatment with DAF resulted in decreased accumulation of C3a, MAC, C3a-C3aR interaction, caspase-9, activated caspase-3, and pTyr416-Src (activated Src) tyrosine kinase. Conclusion DAF was found to reduce neuronal cell death and apoptosis in NaCN induced hypoxia. This effect is attributed to the ability of DAF to limit complement activation and inhibit the activity of Src and caspases 9 and 3. This study supports the inhibiting of complement as a neuroprotective strategy against CNS ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
26
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Sunderram J, Semmlow J, Thakker-Varia S, Bhaumik M, Hoang-Le O, Neubauer JA. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 2009; 297:R300-12. [PMID: 19458275 DOI: 10.1152/ajpregu.90737.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adaptations to chronic hypoxia (CH) could reflect cellular changes within the cardiorespiratory regions of the rostral ventrolateral medulla (RVLM), the C1 region, and the pre-Bötzinger complex (pre-BötC). Previous studies have shown that the hypoxic chemosensitivity of these regions are heme oxygenase (HO) dependent and that CH induces HO-1. To determine the time course of HO-1 induction within these regions and explore its relevance to the respiratory and sympathetic responses during CH, the expression of HO-1 mRNA and protein in the RVLM and measures of respiration, sigh frequency, and sympathetic activity (spectral analysis of heart rate) were examined during 10 days of CH. Respiratory and sympathetic responses to acute hypoxia were obtained in chronically instrumented awake wild-type (WT) and HO-1 null mice. After 4 days of CH, there was a significant induction of HO-1 within the C1 region and pre-BötC. WT mice acclimated to CH by increasing peak diaphragm EMG after 10 days of CH but had no change in the respiratory response to acute hypoxia. There were no significant differences between WT and HO-1 null mice. In WT mice, hypoxic sigh frequency and hypoxic sensitivity of sympathetic activity initially declined before returning toward baseline after 5 days of CH, correlating with the induction of HO-1. In contrast, HO-1 null mice had a persistent decline in hypoxic sigh frequency and hypoxic sensitivity of sympathetic activity. We conclude that induction of HO-1 in these RVLM cardiorespiratory regions may be important for the hypoxic sensitivity of sighs and sympathetic activity during CH.
Collapse
Affiliation(s)
- Jagadeeshan Sunderram
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Powell FL. Heme oxygenase is necessary for the excitatory response of cultured neonatal rat rostral ventrolateral medulla neurons to hypoxia by D'Agostino D, Mazza E, and Neubauer JA. Am J Physiol Regul Integr Comp Physiol 2008; 296:R100-1. [PMID: 18987284 DOI: 10.1152/ajpregu.90868.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|