1
|
Gebien DJ, Eisenhut M. Uncovering Diaphragm Cramp in SIDS and Other Sudden Unexpected Deaths. Diagnostics (Basel) 2024; 14:2324. [PMID: 39451647 PMCID: PMC11506607 DOI: 10.3390/diagnostics14202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
The diaphragm is the primary muscle of respiration. Here, we disclose a fascinating patient's perspective that led, by clinical reasoning alone, to a novel mechanism of spontaneous respiratory arrests termed diaphragm cramp-contracture (DCC). Although the 7-year-old boy survived its paroxysmal nocturnal "bearhug pain apnea" episodes, essentially by breathing out to breathe in, DCC could cause sudden unexpected deaths in children, especially infants. Diaphragm fatigue is central to the DCC hypothesis in SIDS. Most, if not all, SIDS risk factors contribute to it, such as male sex, young infancy, rebreathing, nicotine, overheating and viral infections. A workload surge by a roll to prone position or REM-sleep inactivation of airway dilator or respiratory accessory muscles can trigger pathological diaphragm excitation (e.g., spasms, flutter, cramp). Electromyography studies in preterm infants already show that diaphragm fatigue and sudden temporary failure by transient spasms induce apneas, hypopneas and forced expirations, all leading to hypoxemic episodes. By extension, prolonged spasm as a diaphragm cramp would induce sustained apnea with severe hypoxemia and cardiac arrest if not quickly aborted. This would cause a sudden, rapid, silent death consistent with SIDS. Moreover, a unique airway obstruction could develop where the hypercontracted diaphragm resists terminal inspiratory efforts by the accessory muscles. It would disappear postmortem. SIDS autopsy evidence consistent with DCC includes disrupted myofibers and contraction band necrosis as well as signs of agonal breathing from obstruction. Screening for diaphragm injury from hypoxemia, hyperthermia, viral myositis and excitation include serum CK-MM and skeletal troponin-I. Active excitation could be visualized on ultrasound or fluoroscopy and monitored by respiratory inductive plethysmography or electromyography.
Collapse
Affiliation(s)
| | - Michael Eisenhut
- Luton & Dunstable University Hospital, Lewsey Road, Luton LU4 0DZ, UK;
| |
Collapse
|
2
|
Krishnan JKS, Rice S, Mikes M, Sugiura MH, Drew KL, Barati Z, Oliver SR. Pre-hibernation diet alters skeletal muscle relaxation kinetics, but not force development in torpid arctic ground squirrels. J Comp Physiol B 2024; 194:65-79. [PMID: 38219236 DOI: 10.1007/s00360-023-01527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
During the hibernation season, Arctic ground squirrels (AGS) experience extreme temperature fluctuations (body temperature, Tb, as low as - 3 °C), during which they are mostly physically inactive. Once Tb reaches ~ 15 °C during interbout arousals, hibernators recruit skeletal muscle (SkM) for shivering thermogenesis to reach Tb of ~ 35 °C. Polyunsaturated fatty acids (PUFA) in the diet are known to influence SkM function and metabolism. Recent studies in the cardiac muscle of hibernators have revealed that increased levels of ω-6 and the ω-6:ω-3 PUFA ratio correlate with sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and hibernation status. We hypothesized that diet (increased ω-6:ω-3 PUFA ratio) and torpor status are important in the regulation of the SERCA pump and that this may improve SkM performance during hibernation. Ex vivo functional assays were used to characterize performance changes in SkM (diaphragm) from AGS fed the following diets. (1) Standard rodent chow with an ω-6:ω-3 ratio of 5:1, or (2) a balanced diet with an ω-6:ω-3 ratio of 1:1 that roughly mimics wild diet. We collected diaphragms at three different stages of hibernation (early torpor, late torpor, and arousal) and evaluated muscle function under hypothermic temperature stress at 4 °C, 15 °C, 25 °C, and 37 °C to determine functional resilience. Our data show that torpid animals fed standard rodent chow have faster SkM relaxation when compared to the balanced diet animals. Furthermore, we discovered that standard rodent chow AGS during torpor has higher SkM relaxation kinetics, but this effect of torpor is eliminated in balanced diet AGS. Interestingly, neither diet nor torpor influenced the rate of force development (rate of calcium release). This is the first study to show that increasing the dietary ω-6:ω-3 PUFA ratio improves skeletal muscle performance during decreased temperatures in a hibernating animal. This evidence supports the interpretation that diet can change some functional properties of the SkM, presumably through membrane lipid composition, ambient temperature, and torpor interaction, with an impact on SkM performance.
Collapse
Affiliation(s)
- Jishnu K S Krishnan
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Sarah Rice
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Monica Mikes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - M Hoshi Sugiura
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Zeinab Barati
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - S Ryan Oliver
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Chemistry, United States Naval Academy, Annapolis, MD, USA.
| |
Collapse
|
3
|
Laitano O, Oki K, Leon LR. The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology. Int J Sports Med 2021; 42:673-681. [PMID: 33772503 DOI: 10.1055/a-1400-9754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, United States
| | - Kentaro Oki
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| | - Lisa R Leon
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| |
Collapse
|
4
|
Mongin D, Chabert C, Uribe Caparros A, Guzmán JFV, Hue O, Alvero-Cruz JR, Courvoisier DS. The complex relationship between effort and heart rate: a hint from dynamic analysis. Physiol Meas 2020; 41:105003. [PMID: 33164909 DOI: 10.1088/1361-6579/abbb6e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Dynamic analysis can be used to study the changes of self-regulated biological processes driven by external stimuli. Recently, the changes of heart rate during effort tests has successfully been adjusted using a simple first-order differential equation model driven by body power expenditure. Although this approach produces valid estimates and yields pertinent indices for the analysis of such measurements, it suffers from an inability to model the saturation of the heart-rate increase at high power expenditures and the change of heart-rate equilibrium following effort. APPROACH We propose a new analysis allowing the estimation of changes of the heart rate in response to effort (gain) as a function of the power expenditure value. MAIN RESULTS When applied to the measured heart rates of 30 amateur athletes performing a maximum graded-effort treadmill test, the proposed model was able to predict 99% of the heart rate change measured during exercise. The estimated gains decreased with a power increase above the first ventilatory threshold. This trend was stronger above the second ventilatory threshold and was strongly correlated with the maximum oxygen consumption. SIGNIFICANCE The proposed approach yields a highly precise model of heart rate dynamics during variable effort that reflects the changes of metabolic energy systems at play during exercise.
Collapse
Affiliation(s)
- Denis Mongin
- Quality of Care Unit, University Hospitals of Geneva, Geneva, Switzerland. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
5
|
Laitano O, Sheikh LH, Mattingly AJ, Murray KO, Ferreira LF, Clanton TL. Osmolality Selectively Offsets the Impact of Hyperthermia on Mouse Skeletal Muscle in vitro. Front Physiol 2018; 9:1496. [PMID: 30429796 PMCID: PMC6220237 DOI: 10.3389/fphys.2018.01496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Hyperthermia and dehydration can occur during exercise in hot environments. Nevertheless, whether elevations in extracellular osmolality contributes to the increased skeletal muscle tension, sarcolemmal injury, and oxidative stress reported in warm climates remains unknown. We simulated osmotic and heat stress, in vitro, in mouse limb muscles with different fiber compositions. Extensor digitorum longus (EDL) and soleus (SOL) were dissected from 36 male C57BL6J and mounted at optimal length in tissue baths containing oxygenated buffer. Muscles were stimulated with non-fatiguing twitches for 30 min. Four experimental conditions were tested: isotonic-normothermia (285 mOsm•kg-1 and 35°C), hypertonic-normothermia (300 mOsm•kg-1 and 35°C), isotonic-hyperthermia (285 mOsm•kg-1 and 41°C), and hypertonic-hyperthermia (300 mOsm•kg-1 and 41°C). Passive tension was recorded continuously. The integrity of the sarcolemma was determined using a cell-impermeable fluorescent dye and immunoblots were used for detection of protein carbonyls. In EDL muscles, isotonic and hypertonic-hyperthermia increased resting tension (P < 0.001). Whereas isotonic-hyperthermia increased sarcolemmal injury in EDL (P < 0.001), this effect was absent in hypertonic-hyperthermia. Similarly, isotonic-hyperthermia elevated protein carbonyls (P = 0.018), a response not observed with hypertonic-hyperthermia. In SOL muscles, isotonic-hyperthermia also increases resting tension (P < 0.001); however, these effects were eliminated in hypertonic-hyperthermia. Unlike EDL, there were no effects of hyperthermia and/or hyperosmolality on sarcolemmal injury or protein carbonyls. Osmolality selectively modifies skeletal muscle response to hyperthermia in this model. Fast-glycolytic muscle appears particularly vulnerable to isotonic-hyperthermia, resulting in elevated muscle tension, sarcolemmal injury and protein oxidation; whereas slow-oxidative muscle exhibits increased tension but no injury or protein oxidation under the conditions and duration tested.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Colegiado de Educação Física, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Laila H. Sheikh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Alex J. Mattingly
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kevin O. Murray
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab 2018; 27:962-976. [PMID: 29719234 DOI: 10.1016/j.cmet.2018.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of molecular techniques to exercise biology has provided novel insight into the complexity and breadth of intracellular signaling networks involved in response to endurance-based exercise. Here we discuss several strategies that have high uptake by athletes and, on mechanistic grounds, have the potential to promote cellular adaptation to endurance training in skeletal muscle. Such approaches are based on the underlying premise that imposing a greater metabolic load and provoking extreme perturbations in cellular homeostasis will augment acute exercise responses that, when repeated over months and years, will amplify training adaptation.
Collapse
Affiliation(s)
- John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia.
| | - Carsten Lundby
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; Department of Sport Nutrition, Australian Institute of Sport, Belconnen, ACT, Australia
| |
Collapse
|
7
|
Ganesan S, Reynolds C, Hollinger K, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1288-96. [PMID: 27009052 DOI: 10.1152/ajpregu.00494.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Carmen Reynolds
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Katrin Hollinger
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| |
Collapse
|
8
|
King MA, Clanton TL, Laitano O. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2016; 310:R105-14. [DOI: 10.1152/ajpregu.00395.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022]
Abstract
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume.
Collapse
Affiliation(s)
| | | | - Orlando Laitano
- University of Florida, Applied Physiology and Kinesiology, and
- Universidade Federal do Vale do São Francisco, Colegiado de Educação Física, Brazil
| |
Collapse
|
9
|
Sakellariou GK, Jackson MJ, Vasilaki A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic Res 2013; 48:12-29. [PMID: 23915064 DOI: 10.3109/10715762.2013.830718] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The production of reactive oxygen and nitrogen species (RONS) by skeletal muscle is important as it (i) underlies oxidative damage in many degenerative muscle pathologies and (ii) plays multiple regulatory roles by fulfilling important cellular functions. Superoxide and nitric oxide (NO) are the primary radical species produced by skeletal muscle and studies in the early 1980s demonstrated that their generation is augmented during contractile activity. Over the past 30 years considerable research has been undertaken to identify the major sites that contribute to the increased rate of RONS generation in response to contractions. It is widely accepted that NO is regulated by the nitric oxide synthases, however the sites that modulate changes in superoxide during exercise remain unclear. Despite the initial indications that the mitochondrial electron transport chain was the predominant source of superoxide during activity, with the development of analytical methods a number of alternative potential sites have been identified including the NAD(P)H oxidases, xanthine oxidase, cyclooxygenases, and lipoxygenases linked to the activity of the phospholipase A2 enzymes. In the present review we outline the subcellular sites that modulate intracellular changes in superoxide in skeletal muscle and based on the available experimental evidence in the literature we conclude that the NAD(P)H oxidases are likely to be the major superoxide generating sources in contracting skeletal muscle.
Collapse
Affiliation(s)
- G K Sakellariou
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool , UK
| | | | | |
Collapse
|
10
|
Welc SS, Phillips NA, Oca-Cossio J, Wallet SM, Chen DL, Clanton TL. Hyperthermia increases interleukin-6 in mouse skeletal muscle. Am J Physiol Cell Physiol 2012; 303:C455-66. [PMID: 22673618 DOI: 10.1152/ajpcell.00028.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
11
|
Oliver SR, Phillips NA, Novosad VL, Bakos MP, Talbert EE, Clanton TL. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism. Am J Physiol Regul Integr Comp Physiol 2012; 302:R845-53. [PMID: 22237593 DOI: 10.1152/ajpregu.00595.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Loss of the intestinal barrier is critical to the clinical course of heat illness, but the underlying mechanisms are still poorly understood. We tested the hypothesis that conditions characteristic of mild heatstroke in mice are associated with injury to the epithelial lining of the intestinal tract and comprise a critical component of barrier dysfunction. Anesthetized mice were gavaged with 4 kDa FITC-dextran (FD-4) and exposed to increasing core temperatures, briefly reaching 42.4°C, followed by 30 min recovery. Arterial samples were collected to measure FD-4 concentration in plasma (in vivo gastrointestinal permeability). The small intestines were then removed to measure histological evidence of injury. Hyperthermia resulted in a ≈2.5-fold elevation in plasma FD-4 and was always associated with significant histological evidence of injury to the epithelial lining compared with matched controls, particularly in the duodenum. When isolated intestinal segments from control animals were exposed to ≥41.5°C, marked increases in permeability were observed within 60 min. These changes were associated with release of lactate dehydrogenase, evidence of protein oxidation via carbonyl formation and histological damage. Coincubation with N-acetylcysteine protected in vitro permeability during hyperthermia and reduced histological damage and protein oxidation. Chelation of intracellular Ca(2+) to block tight junction opening during 41.5°C exposure failed to reduce the permeability of in vitro segments. The results demonstrate that hyperthermia exposure in mouse intestine, at temperatures at or below those necessary to induce mild heatstroke, cause rapid and substantial injury to the intestinal lining that may be attributed, in part, to oxidative stress.
Collapse
Affiliation(s)
- S R Oliver
- Univ. of Florida, College of Health and Human Performance, Dept. of Applied Physiology & Kinesiology, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
12
|
Place N, Yamada T, Zhang SJ, Westerblad H, Bruton JD. High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol 2009; 587:4717-24. [PMID: 19675072 DOI: 10.1113/jphysiol.2009.176883] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intense activation of skeletal muscle results in fatigue development, which involves impaired function of the muscle cells resulting in weaker and slower contractions. Intense muscle activity also results in increased heat production and muscle temperature may rise by up to 6 degrees C. Hyperthermia is associated with impaired exercise performance in vivo and recent studies have shown contractile dysfunction and premature fatigue development in easily fatigued muscle fibres stimulated at high temperatures and these defects were attributed to oxidative stress. Here we studied whether fatigue-resistant soleus fibres stimulated at increased temperature show premature fatigue development and whether increasing the level of oxidative stress accelerates fatigue development. Intact single fibres or small bundles of soleus fibres were fatigued by 600 ms tetani given at 2 s intervals at 37 degrees C and 43 degrees C, which is the highest temperature the muscle would experience in vivo. Tetanic force in the unfatigued state was not significantly different at the two temperatures. With 100 fatiguing tetani, force decreased by approximately 15% at both temperatures; the free cytosolic [Ca(2+)] (assessed with indo-1) showed a similar approximately 10% decrease at both temperatures. The oxidative stress during fatigue at 43 degrees C was increased by application of 10 microM hydrogen peroxide or tert-butyl hydroperoxide and this did not cause premature fatigue development. In summary, fatigue-resistant muscle fibres do not display impaired contractility and fatigue resistance at the highest temperature that mammals, including humans, would experience in vivo. Thus, intrinsic defects in fatigue-resistant muscle fibres cannot explain the decreased physical performance at high temperatures.
Collapse
Affiliation(s)
- Nicolas Place
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm S-171 77, Sweden
| | | | | | | | | |
Collapse
|