1
|
Malone JJ, MacLaren DPM, Campbell IT, Hulton AT. A 3-day dietary manipulation affects muscle glycogen and results in modifications of carbohydrate and fat metabolism during exercise when hyperglycaemic. Eur J Appl Physiol 2020; 120:873-882. [DOI: 10.1007/s00421-020-04326-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
|
2
|
Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, Westerberg AC, Jensen J. Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol 2019; 10:1499. [PMID: 31920704 PMCID: PMC6931312 DOI: 10.3389/fphys.2019.01499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Low-carbohydrate-high-fat (LCHF) diets are efficient for weight loss, and are also used by healthy people to maintain bodyweight. The main aim of this study was to investigate the effect of 3-week energy-balanced LCHF-diet, with >75 percentage energy (E%) from fat, on glucose tolerance and lipid profile in normal weight, young, healthy women. The second aim of the study was to investigate if a bout of exercise would prevent any negative effect of LCHF-diet on glucose tolerance. Seventeen females participated, age 23.5 ± 0.5 years; body mass index 21.0 ± 0.4 kg/m2, with a mean dietary intake of 78 ± 1 E% fat, 19 ± 1 E% protein and 3 ± 0 E% carbohydrates. Measurements were performed at baseline and post-intervention. Fasting glucose decreased from 4.7 ± 0.1 to 4.4 mmol/L (p < 0.001) during the dietary intervention whereas fasting insulin was unaffected. Glucose area under the curve (AUC) and insulin AUC did not change during an OGTT after the intervention. Before the intervention, a bout of aerobic exercise reduced fasting glucose (4.4 ± 0.1 mmol/L, p < 0.001) and glucose AUC (739 ± 41 to 661 ± 25, p = 0.008) during OGTT the following morning. After the intervention, exercise did not reduce fasting glucose the following morning, and glucose AUC during an OGTT increased compared to the day before (789 ± 43 to 889 ± 40 mmol/L∙120min–1, p = 0.001). AUC for insulin was unaffected. The dietary intervention increased total cholesterol (p < 0.001), low-density lipoprotein (p ≤ 0.001), high-density lipoprotein (p = 0.011), triglycerides (p = 0.035), and free fatty acids (p = 0.021). In conclusion, 3-week LCHF-diet reduced fasting glucose, while glucose tolerance was unaffected. A bout of exercise post-intervention did not decrease AUC glucose as it did at baseline. Total cholesterol increased, mainly due to increments in low-density lipoprotein. LCHF-diets should be further evaluated and carefully considered for healthy individuals.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Department of Medicine, Atlantis Medical University College, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Odden
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonny Hisdal
- Oslo Vascular Center, Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - Ane C Westerberg
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway.,Institute of Health Sciences, Kristiania University College, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
3
|
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2019; 243:563-575. [PMID: 29557214 DOI: 10.1177/1535370218759636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact statement This is an extensive review of the recent advances in our understanding of the roles of some members of the sirtuins family, such as SIRT1, SIRT2, SIRT3, and SIRT6, in the regulation of intermediary metabolism during stem cell differentiation and in the reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). This article provides an updated integrated view on the mechanisms by which sirtuins-mediated posttranslational protein modifications regulate mitochondrial biogenesis, bioenergetics, and antioxidant defense in the maintenance and differentiation of stem cells and in iPSCs formation, respectively.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,*These two authors made equal contributions
| | - Yu-Ting Wu
- 2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan.,*These two authors made equal contributions
| | - Chia-Ling Tsai
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan
| | - Yau-Huei Wei
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
4
|
Hsu YC, Wu YT, Yu TH, Wei YH. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 2016; 52:119-31. [PMID: 26868759 DOI: 10.1016/j.semcdb.2016.02.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms in the regulation of mitochondrial metabolism of MSCs may ultimately improve therapeutic outcomes of stem cell therapy in the future.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan
| | - Yu-Ting Wu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ting-Hsien Yu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
5
|
Wu YT, Wu SB, Wei YH. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radic Res 2014; 48:1070-84. [DOI: 10.3109/10715762.2014.920956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 2011; 36:12-22. [PMID: 21326374 DOI: 10.1139/h10-089] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (<1-2 weeks) diet-training interventions that increase endogenous substrate stores (i.e., muscle glycogen and lipids) and alter patterns of substrate utilization during exercise. One such strategy is "fat adaptation", an intervention in which well-trained endurance athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.
Collapse
Affiliation(s)
- Wee Kian Yeo
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
7
|
Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985) 2011; 110:834-45. [DOI: 10.1152/japplphysiol.00949.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle displays remarkable plasticity, enabling substantial adaptive modifications in its metabolic potential and functional characteristics in response to external stimuli such as mechanical loading and nutrient availability. Contraction-induced adaptations are determined largely by the mode of exercise and the volume, intensity, and frequency of the training stimulus. However, evidence is accumulating that nutrient availability serves as a potent modulator of many acute responses and chronic adaptations to both endurance and resistance exercise. Changes in macronutrient intake rapidly alter the concentration of blood-borne substrates and hormones, causing marked perturbations in the storage profile of skeletal muscle and other insulin-sensitive tissues. In turn, muscle energy status exerts profound effects on resting fuel metabolism and patterns of fuel utilization during exercise as well as acute regulatory processes underlying gene expression and cell signaling. As such, these nutrient-exercise interactions have the potential to activate or inhibit many biochemical pathways with putative roles in training adaptation. This review provides a contemporary perspective of our understanding of the molecular and cellular events that take place in skeletal muscle in response to both endurance and resistance exercise commenced after acute and/or chronic alterations in nutrient availability (carbohydrate, fat, protein, and several antioxidants). Emphasis is on the results of human studies and how nutrient provision (or lack thereof) interacts with specific contractile stimulus to modulate many of the acute responses to exercise, thereby potentially promoting or inhibiting subsequent training adaptation.
Collapse
Affiliation(s)
- John A. Hawley
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Australia
| | - Louise M. Burke
- Department of Sports Nutrition, Australian Institute of Sport, Belconnen, Australia
| | | | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB J 2010; 25:1088-96. [DOI: 10.1096/fj.10-171983] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lindsay M. Edwards
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Andrew J. Murray
- Department of Physiology Development, and Neuroscience University of Cambridge Cambridge UK
| | - Cameron J. Holloway
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Emma E. Carter
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Graham J. Kemp
- Institute of Ageing and Chronic Disease Faculty of Health and Life Sciences University of Liverpool Liverpool UK
| | - Ion Codreanu
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | | | - Damian J. Tyler
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Peter A. Robbins
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Kieran Clarke
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| |
Collapse
|
9
|
Peters SJ, LeBlanc PJ. Metabolic aspects of low carbohydrate diets and exercise. Nutr Metab (Lond) 2004; 1:7. [PMID: 15507161 PMCID: PMC524355 DOI: 10.1186/1743-7075-1-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 09/30/2004] [Indexed: 01/30/2023] Open
Abstract
Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.
Collapse
Affiliation(s)
- Sandra J Peters
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| | - Paul J LeBlanc
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|