1
|
Sildenafil Citrate Enhances Renal Organogenesis Following Metanephroi Allotransplantation into Non-Immunosuppressed Hosts. J Clin Med 2022; 11:jcm11113068. [PMID: 35683456 PMCID: PMC9181797 DOI: 10.3390/jcm11113068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022] Open
Abstract
In order to harness the potential of metanephroi allotransplantation to the generation of a functional kidney graft on demand, we must achieve further growth post-transplantation. Sildenafil citrate (SC) is widely known as a useful inductor of angiogenesis, offering renoprotective properties due to its anti-inflammatory, antifibrotic, and antiapoptotic effects. Here, we performed a laparoscopic metanephroi allotransplantation after embedding sildenafil citrate into the retroperitoneal fat of non-immunosuppressed adult rabbit hosts. Histology and histomorphometry were used to examine the morphofunctional changes in new kidneys 21 days post-transplantation. Immunofluorescence of E-cadherin and renin and erythropoietin gene expression were used to assess the tubule integrity and endocrine functionality. After the metanephroi were embedded in a 10 µM SC solution, the new kidneys’ weights become increased significantly. The E-cadherin expression together with the renin and erythropoietin gene expression revealed its functionality, while histological mature glomeruli and hydronephrosis proved the new kidneys’ excretory function. Thus, we have described a procedure through the use of SC that improves the outcomes after a metanephroi transplantation. This study gives hope to a pathway that could offer a handsome opportunity to overcome the kidney shortage.
Collapse
|
2
|
Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S, Rak-Raszewska A. 3D bioprinting of the kidney—hype or hope? ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.3.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
4
|
Donor chimera model for tolerance induction in transplantation. Hum Immunol 2013; 74:550-6. [PMID: 23354322 DOI: 10.1016/j.humimm.2013.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/09/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022]
Abstract
Tolerance induction is the basis of a successful transplantation with the goal being the re-establishment of homeostasis after transplantation. Non-autograft transplantation disrupts this maintenance drastically which would be avoided by administration of a novel procedure. At present, the blood group antigens and the genotypes of the donor and recipient are cross-matched before transplantation combined with a drug regimen that confers general immunosuppression. But the 'specific' unresponsiveness of the recipient to the donor organ, implied by 'tolerance', is not achieved in this process. This article introduces the 'donor chimera model' via the concept of the 'closed transplantation loop' approach for tolerance induction which seeks to limit the use of immunosuppressive therapy after transplantation.
Collapse
|
5
|
Hammerman MR. Pancreas and kidney transplantation using embryonic donor organs. Organogenesis 2012; 1:3-13. [PMID: 19521554 DOI: 10.4161/org.1.1.1008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/01/2004] [Indexed: 01/09/2023] Open
Abstract
One novel solution to the shortage of human organs available for transplantation envisions 'growing' new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.
Collapse
|
6
|
Cohen S, Tchorsh-Yutsis D, Aronovich A, Tal O, Eventov-Friedman S, Katchman H, Klionsky Y, Shezen E, Reisner Y. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs. Transplantation 2010; 89:1198-207. [PMID: 20195218 DOI: 10.1097/tp.0b013e3181d720fd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. METHODS Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. RESULTS E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. CONCLUSION Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee BC, Kim KW, Soh KS. Visualizing the Network of Bonghan Ducts in the Omentum and Peritoneum by Using Trypan Blue. J Acupunct Meridian Stud 2009; 2:66-70. [DOI: 10.1016/s2005-2901(09)60017-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/14/2009] [Indexed: 12/23/2022] Open
|
8
|
Kim SS, Gwak SJ, Han J, Park HJ, Park MH, Song KW, Cho SW, Rhee YH, Chung HM, Kim BS. Kidney tissue reconstruction by fetal kidney cell transplantation: effect of gestation stage of fetal kidney cells. Stem Cells 2007; 25:1393-401. [PMID: 17548530 DOI: 10.1634/stemcells.2006-0183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dialysis and kidney transplantation, current therapies for kidney failure, have limitations such as severe complications, donor shortage, and immune-related problems. The development of an alternative treatment for kidney failure is demanded. The present study shows that the transplantation of fetal kidney cells reconstitutes functional kidney tissue, and that the gestation stage of kidney cells influences the kidney reconstitution. Fetal kidney cells were isolated from metanephroi of rat fetuses at various gestation stages and transplanted into the omentum or kidney of immunodeficient mice. Immunophenotype analysis of fetal kidney cells showed apparent expression of stem cell markers. Three weeks after transplantation, histological analyses of retrieved grafts revealed the formation of kidney structures, including fluorescently labeled transplanted cells, suggesting the potential of fetal kidney cells to reconstitute kidney tissues. The grafts retrieved from omentum contained cystic fluids with concentrated solutes. However, transplanted early fetal kidney cells had also differentiated into nonrenal tissues such as bone and cartilage. In addition, transplantation of fetal kidney cells from a later gestation stage resulted in poor kidney structure formation. Kidney-specific genes were strongly expressed in the earlier cell transplants. The cells at an earlier gestation stage had higher colony forming ability than the cells at a later stage. This study demonstrates the reconstitution of kidney tissue by transplanting fetal kidney cells and the presence of an optimal time window in which fetal kidney cells regenerate kidney tissues. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zareie M, Fabbrini P, Hekking LHP, Keuning ED, Ter Wee PM, Beelen RHJ, van den Born J. Novel role for mast cells in omental tissue remodeling and cell recruitment in experimental peritoneal dialysis. J Am Soc Nephrol 2006; 17:3447-57. [PMID: 17065241 DOI: 10.1681/asn.2005111173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Because of its dynamic structure, the omentum plays a key role in the immunity of the peritoneal cavity by orchestrating peritoneal cell recruitment. Because mast cells accumulate in the omentum upon experimental peritoneal dialysis (PD) and may produce angiogenic/profibrotic factors, it was hypothesized that mast cells mediate omental tissue remodeling during PD. Daily treatment with conventional PD fluid (PDF) for 5 wk resulted in a strong omental remodeling response, characterized by an approximately 10-fold increase in mast cell density (P < 0.01), an approximately 20-fold increase in vessel density (P < 0.02), an approximately 20-fold increase in the number of milky spots (P < 0.01), and a four-fold increase in submesothelial matrix thickness (P < 0.0003) in wild-type rats. In contrast, all PDF-induced omental changes were significantly reduced in mast cell-deficient Ws/Ws rats or in wild-type rats that were treated orally with a mast cell stabilizer cromoglycate. A time-course experiment showed mast cell accumulation immediately before the formation of blood vessels and milky spots. Functionally, PDF evoked a peritoneal cell influx, which was significantly reduced in Ws/Ws rats (P < 0.04) and in wild-type rats that were treated with cromoglycate (P < 0.03). Cromoglycate treatment also completely prevented PDF-induced omental adhesions to the catheter tip (P = 0.0002). Mesothelial damage, angiogenesis, and fibrosis of mesentery and parietal peritoneum as well as glucose absorption rate and ultrafiltration capacity proved to be mast cell independent. Data strongly support the hypothesis that mast cells mediate PDF-induced omental tissue remodeling and, subsequently, peritoneal cell influx and adhesion formation, providing therapeutic possibilities of modulating omental function.
Collapse
Affiliation(s)
- Mohammad Zareie
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Takeda SI, Rogers SA, Hammerman MR. Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol 2005; 15:211-5. [PMID: 16431288 DOI: 10.1016/j.trim.2005.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/31/2005] [Indexed: 11/27/2022]
Abstract
Xenotransplantation of renal primordia in lieu of human kidney allografts has been proposed as a solution for the lack of organ availability. We and others have shown that growth and development of pig renal primordia occur post-transplantation across a highly disparate xenogenic barrier to rat. The origins (donor versus host) of endothelial cells (ECs) and mesangial cells (MCs) in grafts are incompletely delineated. In the present study, we investigated using immunohistochemistry, the origin ECs and MCs of the metanephric xenografts originating from embryonic day 28 (E28) pig embryos transplanted into rats. We employed species-specific antibodies: anti-rat endothelial cell antigen-1 (RECA-1) and -CD31 to detect rat- and pig-derived ECs, respectively; and anti-Thy-1 and -vimentin to detect rat- and pig-derived MCs, respectively. Both intra- and extraglomerular ECs in the xenografts were stained exclusively with rat-specific anti-RECA-1 at 5, 7, or 8 weeks post-transplantation, whereas ECs were not stained with pig-specific anti-CD31. In contrast, MCs in the xenografts were stained predominantly using the pig specific anti-vimentin, although a few glomeruli were positive for rat-specific anti-Thy-1. We conclude that the predominant origin of ECs post-transplantation of embryonic pig metanephroi into rats is the host, whereas MCs originate mainly from the donor.
Collapse
Affiliation(s)
- Shin-Ichi Takeda
- Renal Division, Box 8126, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis MO 63110, USA
| | | | | |
Collapse
|
11
|
Abstract
Kidney transplantation is the treatment of choice for patients with end stage renal disease. Kidney transplantation not only improves the quality of life but also prolongs life. Over the last decade, the short-term allograft survival rate has been improved dramatically. Chronic allograft nephropathy and death from cardiovascular diseases become predominant causes of later graft loss. Prevention and treatment of these disease processes require a comprehensive approach. The ever-increasing shortage of organ supply becomes the greatest challenge for the transplant community and modern medicine. More and more patients are waiting for organs; many of them are dying while waiting. Xenotransplantation and organ engineering and cloning are promising techniques and can potentially provide organs for transplantation in the future.
Collapse
Affiliation(s)
- Rubin Zhang
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | |
Collapse
|
12
|
Rogers SA, Chen F, Talcott M, Hammerman MR. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen. Am J Physiol Endocrinol Metab 2004; 286:E502-9. [PMID: 14678953 DOI: 10.1152/ajpendo.00445.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insufficient supply of tissue, loss posttransplantation, and limited potential for expansion of beta-cells restrict the use of islet allotransplantation for diabetes. A way to overcome the supply and expansion problems is to xenotransplant embryonic tissue. We have shown that whole rat pancreatic anlagen isotransplanted into the omentum of rats, or xenotransplanted into costimulatory blocked mice, undergo growth and differentiate into islets surrounded by stoma without exocrine tissue. Isotransplants normalize glucose tolerance in diabetic hosts. Here, we show that embryonic day 29 porcine pancreas transplanted into the omentum of adult diabetic rats undergoes endocrine tissue differentiation over 20 wk and normalizes body weights and glucose tolerance. Unlike rat-to-rodent transplants, individual alpha- and beta-cells engraft without a stromal component, and no immunosuppression is required for pig-to-rat transplants. Herein is described a novel means to effect the xenotransplantation of individual islet cells across a highly disparate barrier.
Collapse
Affiliation(s)
- Sharon A Rogers
- Renal Division, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
13
|
|