1
|
Salomonsson M, Brasen JC, Sorensen CM. Role of renal vascular potassium channels in physiology and pathophysiology. Acta Physiol (Oxf) 2017; 221:14-31. [PMID: 28371470 DOI: 10.1111/apha.12882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage-operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium-derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homoeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis.
Collapse
Affiliation(s)
| | - J. C. Brasen
- Department of Electrical Engineering; Technical University of Denmark; Kgs. Lyngby Denmark
| | - C. M. Sorensen
- Department of Biomedical Sciences; Division of Renal and Vascular Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
2
|
Imig JD. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:105-41. [PMID: 27451096 DOI: 10.1016/bs.apha.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.
Collapse
Affiliation(s)
- J D Imig
- Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
3
|
Rasmussen KMB, Braunstein TH, Salomonsson M, Brasen JC, Sorensen CM. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro. Pflugers Arch 2016; 468:1139-1149. [PMID: 26965146 DOI: 10.1007/s00424-016-1805-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 01/20/2023]
Abstract
We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca(2+)-activated K(+) channels and whether K(+) released from the endothelial cells activates inward rectifier K(+) (Kir) channels and/or the Na(+)/K(+)-ATPase. Also, involvement of renal myoendothelial gap junctions was evaluated in vitro. Isometric tension in rat renal interlobar arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane anesthetized rats. The EDH response was defined as the ACh-induced vasodilation assessed after inhibition of nitric oxide synthase and cyclooxygenase using L-NAME and indomethacin, respectively. After inhibition of small conductance Ca(2+)-activated K(+) channels (SKCa) and intermediate conductance Ca(2+)-activated K(+) channels (IKCa) (by apamin and TRAM-34, respectively), the EDH response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na(+)/K(+)-ATPases (by ouabain and Ba(2+), respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na(+)/K(+)-ATPases plays a significant role in the renal vascular EDH response in vitro but not in vivo. The renal EDH response in vivo is complex and may consist of several overlapping mechanisms some of which remain obscure.
Collapse
Affiliation(s)
- Kasper Moller Boje Rasmussen
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hartig Braunstein
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Christian Brasen
- Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads 349, 2800, Kgs. Lyngby, Denmark.
| | - Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
van der Graaf AM, Wiegman MJ, Plösch T, Zeeman GG, van Buiten A, Henning RH, Buikema H, Faas MM. Endothelium-dependent relaxation and angiotensin II sensitivity in experimental preeclampsia. PLoS One 2013; 8:e79884. [PMID: 24223202 PMCID: PMC3819278 DOI: 10.1371/journal.pone.0079884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Objective We investigated endothelial dysfunction and the role of angiotensin (Ang)-II type I (AT1-R) and type II (AT2-R) receptor in the changes in the Ang-II sensitivity in experimental preeclampsia in the rat. Methods Aortic rings were isolated from low dose lipopolysaccharide (LPS) infused pregnant rats (experimental preeclampsia; n=9), saline-infused pregnant rats (n=8), and saline (n=8) and LPS (n=8) infused non-pregnant rats. Endothelium-dependent acetylcholine--mediated relaxation was studied in phenylephrine-preconstricted aortic rings in the presence of vehicle, NG-nitro-L-arginine methyl ester and/or indomethacin. To evaluate the role for AT1-R and AT2-R in Ang-II sensitivity, full concentration response curves were obtained for Ang-II in the presence of losartan or PD123319. mRNA expression of the AT1-R and AT2-R, eNOS and iNOS, COX1 and COX2 in aorta were evaluated using real-time RT-PCR. Results The role of vasodilator prostaglandins in the aorta was increased and the role of endothelium-derived hyperpolarizing factor and response of the AT1-R and AT2-R to Ang-II was decreased in pregnant saline infused rats as compared with non-pregnant rats. These changes were not observed during preeclampsia. Conclusion Pregnancy induced adaptations in endothelial function, which were not observed in the rat model for preeclampsia. This role of lack of pregnancy induced endothelial adaptation in the pathophysiology of experimental preeclampsia needs further investigation.
Collapse
Affiliation(s)
- Anne Marijn van der Graaf
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- * E-mail:
| | - Marjon J. Wiegman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Center for Liver, Digestive and Metabolic Diseases, Laboratory of Pediatrics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerda G. Zeeman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Azuwerus van Buiten
- Department of Clinical Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hendrik Buikema
- Department of Clinical Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marijke M. Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Dautzenberg M, Just A. Temporal characteristics of nitric oxide-, prostaglandin-, and EDHF-mediated components of endothelium-dependent vasodilation in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R987-98. [DOI: 10.1152/ajpregu.00526.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasodilation is mediated by nitric oxide (NO), prostaglandins (PG), and endothelium-derived hyperpolarizing factor (EDHF). We studied the contributions and temporal characteristics of these components in the renal vasodilator responses to acetylcholine (ACh) and bradykinin (BK) and in the buffering of vasoconstrictor responses to norepinephrine (NE) and angiotensin II (ANG II). Renal blood flow (RBF) and vascular conductance (RVC) were studied in anesthetized rats in response to renal arterial bolus injections before and after inhibition of NO-synthase ( NG-nitro-l-arginine methyl ester, l-NAME), cyclooxygenase (indomethacin, INDO), or both. ACh increased RVC peaking at maximal time ( tmax) = 29 s. l-NAME ( n = 8) diminished the integrated response and made it substantially faster ( tmax = 18 s). The point-by-point difference caused by l-NAME (= NO component) integrated to 74% of control and was much slower ( tmax = 38 s). INDO ( n = 9) reduced the response without affecting tmax (36 vs. 30 s). The difference (= PG) reached 21% of the control with tmax = 25 s. l-NAME+INDO ( n = 17) reduced the response to 18% and markedly accelerated tmax to 16s (= EDHF). Results were similar for BK with slightly more PG and less NO contribution than for ACh. Constrictor responses to NE and ANG II were augmented and decelerated by l-NAME and l-NAME+INDO. The calculated difference (= buffering by NO or NO+PG) was slower than the constriction. It is concluded that NO, PG, and EDHF contribute >50%, 20–40%, and <20% to the renal vasodilator effect of ACh and BK, respectively. EDHF acts substantially faster and less sustained ( tmax = 16 s) than NO and PG ( tmax = 30 s). Constrictor buffering by NO and PG is not constant over time, but renders the constriction less sustained.
Collapse
Affiliation(s)
- Marcel Dautzenberg
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| | - Armin Just
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| |
Collapse
|
7
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
8
|
Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 2012; 302:F505-18. [DOI: 10.1152/ajprenal.00052.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K+ conductance is a major determinant of membrane potential ( Vm) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm through the action of voltage-operated Ca2+ channels (VOCC) in VSMC. Increased K+ conductance leads to hyperpolarization and vasodilation, while inactivation of K+ channels causes depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K+ channel function, the role of renal vascular K+ channels in the control of salt and water excretion deserves attention.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Center for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| |
Collapse
|
9
|
|
10
|
Nurmi L, Heikkilä HM, Vapaatalo H, Kovanen PT, Lindstedt KA. Downregulation of Bradykinin Type 2 Receptor Expression in Cardiac Endothelial Cells during Senescence. J Vasc Res 2012; 49:13-23. [DOI: 10.1159/000329615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022] Open
|
11
|
Ding H, Triggle CR. Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch 2010; 459:977-94. [PMID: 20238124 DOI: 10.1007/s00424-010-0807-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 12/20/2022]
Abstract
Robert Furchgott's discovery of the obligatory role that the endothelium plays in the regulation of vascular tone has proved to be a major advance in terms of our understanding of the cellular basis of diabetic vascular disease. Endothelial dysfunction, as defined by a reduction in the vasodilatation response to an endothelium-dependent vasodilator (such as acetylcholine) or to flow-mediated vasodilatation, is an early indicator for the development of the micro- and macroangipathy that is associated with diabetes. In diabetes, hyperglycaemia plays a key role in the initiation and development of endothelial dysfunction; however, the cellular mechanisms involved as well as the importance of dyslipidaemia and co-morbidities such as hypertension and obesity remain incompletely understood. In this review, we discuss the mechanisms whereby hyperglycaemia, oxidative stress and dyslipidaemia can alter endothelial function and highlight their effects on endothelial nitric oxide synthase (eNOS), the endothelium-dependent hyperpolarising factor (EDHF) pathway(s), as well as on the role of endothelium-derived contracting factors (EDCFs) and adipocyte-derived vasoactive factors such as adipose-derived relaxing factor (ADRF).
Collapse
Affiliation(s)
- Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medical College in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | | |
Collapse
|
12
|
Wang X, Wei M, Kuukasjärvi P, Laurikka J, Rinne T, Moilanen E, Tarkka M. The anti-inflammatory effect of bradykinin preconditioning in coronary artery bypass grafting (bradykinin and preconditioning). SCAND CARDIOVASC J 2009; 43:72-9. [DOI: 10.1080/14017430802180449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xin Wang
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
- Department of Cardiac Surgery, FuWai Cardiovascular Disease Hospital, PUMC, China
| | - Minxin Wei
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Pekka Kuukasjärvi
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Laurikka
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Timo Rinne
- Department of Anaesthesia and Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacological Research Group, University of Tampere, Medical School and Tampere University Hospital, Tampere, Finland
| | - Matti Tarkka
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Badzyńska B, Sadowski J. Differential action of bradykinin on intrarenal regional perfusion in the rat: waning effect in the cortex and major impact in the medulla. J Physiol 2009; 587:3943-53. [PMID: 19528250 DOI: 10.1113/jphysiol.2009.172007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The renal kallikrein-kinin system is involved in the control of the intrarenal circulation and arterial pressure but bradykinin (Bk) effects on perfusion of individual kidney zones have not been examined in detail. Effects of Bk infused into renal artery, renal cortex or medulla on perfusion of whole kidney (RBF, renal artery probe) and of the cortex, outer- and inner medulla (CBF, OMBF, IMBF: laser-Doppler fluxes), were examined in anaesthetized rats. Renal artery infusion of Bk, 0.3-0.6 mg kg(-1) h(-1), induced no sustained increase in RBF or CBF. OMBF and IMBF increased initially 6 or 16%, respectively; only the IMBF increase (+10%) was sustained. Pre-treatment with L-NAME, 2.4 mg kg(-1) I.V., prevented the sustained but not initial transient elevation of medullary perfusion. Intracortical Bk infusion, 0.75-1.5 mg kg(-1) h(-1), did not alter RBF or CBF but caused a sustained 33% increase in IMBF. Intramedullary Bk, 0.3 mg kg(-1) h(-1), did not alter RBF or CBF but caused sustained increases in OMBF (+10%) and IMBF (+23%). These responses were not altered by pre-treatment with 1-aminobenzotriazole, 10 mg kg(-1)i.v., a cytochrome P-450 (CYP450) inhibitor, but were prevented or significantly attenuated by L-NAME or intramedullary clotrimazole, 3.9 mg kg(-1) h(-1), an inhibitor of CYP450 epoxygenase and of calcium-dependent K(+) channels (K(Ca)). Thus, cortical vasodilatation induced by Bk is only transient so that the agent is unlikely to control perfusion of the cortex. Bk selectively increases perfusion of the medulla, especially of its inner layer, via activation of the NO system and of K(Ca) channels.
Collapse
Affiliation(s)
- Bozena Badzyńska
- Laboratory of Renal and Body Fluid Physiology, Medical Research Centre of the Polish Academy of Sciences, Pawiskiego 5, 02-106 Warsaw, Poland
| | | |
Collapse
|
14
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
El-Mas MM, El-gowilly SM, Gohar EY, Ghazal ARM. Pharmacological characterization of cellular mechanisms of the renal vasodilatory effect of nicotine in rats. Eur J Pharmacol 2008; 588:294-300. [DOI: 10.1016/j.ejphar.2008.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 02/12/2008] [Accepted: 04/23/2008] [Indexed: 11/16/2022]
|
16
|
Imig JD, Dimitropoulou C, Reddy DS, White RE, Falck JR. Afferent arteriolar dilation to 11, 12-EET analogs involves PP2A activity and Ca2+-activated K+ Channels. Microcirculation 2008; 15:137-50. [PMID: 18260004 DOI: 10.1080/10739680701456960] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The epoxygenase metabolite, 11, 12-epoxyeicosatrienoic acid (11, 12-EET), has renal vascular actions. 11, 12-EET analogs have been developed to determine the structure activity relationship for 11, 12-EET and as a tool to investigate signaling mechanisms responsible for afferent arteriolar dilation. We hypothesized that 11, 12-EET mediated afferent arteriolar dilation involves increased phosphoprotein phosphatase 2A (PP2A) and large-conductance calcium activated K+ (KCa) channels. We evaluated the chemically and/or metabolically table 11, 12-EET analogs: 11, 12-EET-N-methylsulfonimide (11, 12-EET-SI), 11-nonyloxy-undec-8(Z)-enoic acid (11, 12-ether-EET-8-ZE), and 11, 12-trans-oxidoeicosa-8(Z)-eonoic acid (11, 12-tetra-EET-8-ZE). Afferent arteriolar responses were assessed. Activation of KCa channels by 11, 12-EET analogs were established by single cell channel recordings in renal myocytes. Assessment of renal vascular responses revealed that 11, 12-EET analogs increased afferent arteriolar diameter. Vasodilator responses to 11, 12-EET analogs were abolished by K+ channel or PP2A inhibition. 11, 12-EET analogs activated renal myocyte large-conductance KCa channels. 11, 12-EET analogs increased cAMP by 2-fold and PP2A activity increased 3-8 fold in renal myocytes. PP2A inhibition did not significantly affect the 11, 12-EET analog mediated increase in cAMP and PP2A increased renal myocyte KCa channel activity to a much greater extent than PKA. These data support the concept that 11, 12-EET utilizes PP2A dependent pathways to activate large-conductance KCa channels and dilate the afferent arteriole.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
17
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
18
|
Differential effects of glucose on agonist-induced relaxations in human mesenteric and subcutaneous arteries. Br J Pharmacol 2007; 153:480-7. [PMID: 18037911 DOI: 10.1038/sj.bjp.0707592] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute periods of hyperglycaemia are strongly associated with vascular disorder, yet the specific effects of high glucose on human blood vessel function are not fully understood. In this study we (1) characterized the endothelial-dependent relaxation of two similarly sized but anatomically distinct human arteries to two different agonists and (2) determined how these responses are modified by acute exposure to high glucose. EXPERIMENTAL APPROACH Ring segments of human mesenteric and subcutaneous arteries were mounted in a wire myograph. Relaxations to acetylcholine and bradykinin were determined in a control (5 mM) and high glucose (20 mM) environment over a 2 and 6 h incubation period. KEY RESULTS Bradykinin-induced relaxation in both sets of vessels was mediated entirely by EDHF whilst that generated by acetylcholine, though principally generated by EDHF, also had contribution from prostacyclin and possibly nitric oxide in mesenteric and subcutaneous vessels, respectively. A 2-h incubation of high glucose impaired bradykinin-induced relaxation of subcutaneous vessels whilst, in contrast, the relaxation generated by bradykinin in mesenteric vessels was enhanced at the same time point. High glucose significantly augmented the relaxation generated by acetylcholine in mesenteric and subcutaneous vessels at a 2 and 6 h incubation point, respectively. CONCLUSIONS AND IMPLICATIONS Short periods of high glucose exert a variable influence on endothelial function in human isolated blood vessels that is dependent on factors of time, agonist-used and vessel studied. This has implications for how we view the effects of acute hyperglycaemia found in patients with diabetes mellitus as well as other conditions.
Collapse
|