1
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Knopp Y, Geis FK, Heckl D, Horn S, Neumann T, Kuehle J, Meyer J, Fehse B, Baum C, Morgan M, Meyer J, Schambach A, Galla M. Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:256-274. [PMID: 30317165 PMCID: PMC6187057 DOI: 10.1016/j.omtn.2018.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.
Collapse
Affiliation(s)
- Yvonne Knopp
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Neumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Janine Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Presidential Office, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
4
|
Optimization of cerebellar purkinje neuron cultures and development of a plasmid-based method for purkinje neuron-specific, miRNA-mediated protein knockdown. Methods Cell Biol 2015; 131:177-97. [PMID: 26794514 DOI: 10.1016/bs.mcb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a simple and efficient method to knock down proteins specifically in Purkinje neurons (PN) present in mixed mouse primary cerebellar cultures. This method utilizes the introduction via nucleofection of a plasmid encoding a specific miRNA downstream of the L7/Pcp2 promoter, which drives PN-specific expression. As proof-of-principle, we used this plasmid to knock down the motor protein myosin Va, which is required for the targeting of smooth endoplasmic reticulum (ER) into PN spines. Consistent with effective knockdown, transfected PNs robustly phenocopied PNs from dilute-lethal (myosin Va-null) mice with regard to the ER targeting defect. Importantly, our plasmid-based approach is less challenging technically and more specific to PNs than several alternative methods (e.g., biolistic- and lentiviral-based introduction of siRNAs). We also present a number of improvements for generating mixed cerebellar cultures that shorten the procedure and improve the total yield of PNs, and of transfected PNs, considerably. Finally, we present a method to rescue cerebellar cultures that develop large cell aggregates, a common problem that otherwise precludes the further use of the culture.
Collapse
|
5
|
Gallo LI, Liao Y, Ruiz WG, Clayton DR, Li M, Liu YJ, Jiang Y, Fukuda M, Apodaca G, Yin XM. TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Mol Biol Cell 2014; 25:3779-97. [PMID: 25232007 PMCID: PMC4230784 DOI: 10.1091/mbc.e13-10-0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the GEFs and GAPs that regulate its GTP-GDP cycle. TBC1D9B is identified as a Rab11a GAP in MDCK cells, where it regulates the Rab11a-dependent basolateral-to-apical transcytotic pathway. Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs) that regulate its GTP-GDP cycle. We observed that in the presence of Mg2+ (2.5 mM), TBC1D9B interacted via its Tre2-Bub2-Cdc16 (TBC) domain with Rab11a, Rab11b, and Rab4a in a nucleotide-dependent manner. However, only Rab11a was a substrate for TBC1D9B-stimulated GTP hydrolysis. At limiting Mg2+ concentrations (<0.5 mM), Rab8a was an additional substrate for this GAP. In polarized Madin–Darby canine kidney cells, endogenous TBC1D9B colocalized with Rab11a-positive recycling endosomes but less so with EEA1-positive early endosomes, transferrin-positive recycling endosomes, or late endosomes. Overexpression of TBC1D9B, but not an inactive mutant, decreased the rate of basolateral-to-apical IgA transcytosis—a Rab11a-dependent pathway—and shRNA-mediated depletion of TBC1D9B increased the rate of this process. In contrast, TBC1D9B had no effect on two Rab11a-independent pathways—basolateral recycling of the transferrin receptor or degradation of the epidermal growth factor receptor. Finally, expression of TBC1D9B decreased the amount of active Rab11a in the cell and concomitantly disrupted the interaction between Rab11a and its effector, Sec15A. We conclude that TBC1D9B is a Rab11a GAP that regulates basolateral-to-apical transcytosis in polarized MDCK cells.
Collapse
Affiliation(s)
- Luciana I Gallo
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yong Liao
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dennis R Clayton
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Min Li
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yu Jiang
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gerard Apodaca
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiao-Ming Yin
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
6
|
Lu RY, Yang WX, Hu YJ. The role of epithelial tight junctions involved in pathogen infections. Mol Biol Rep 2014; 41:6591-610. [PMID: 24965148 DOI: 10.1007/s11033-014-3543-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.
Collapse
Affiliation(s)
- Ru-Yi Lu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | | | | |
Collapse
|
7
|
Youker RT, Bruns JR, Costa SA, Rbaibi Y, Lanni F, Kashlan OB, Teng H, Weisz OA. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization. Mol Biol Cell 2013; 24:1996-2007. [PMID: 23637462 PMCID: PMC3681702 DOI: 10.1091/mbc.e13-02-0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75-green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.
Collapse
Affiliation(s)
- Robert T Youker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions.
Collapse
Affiliation(s)
- Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
9
|
|
10
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
11
|
Mo D, Costa SA, Ihrke G, Youker RT, Pastor-Soler N, Hughey RP, Weisz OA. Sialylation of N-linked glycans mediates apical delivery of endolyn in MDCK cells via a galectin-9-dependent mechanism. Mol Biol Cell 2012; 23:3636-46. [PMID: 22855528 PMCID: PMC3442411 DOI: 10.1091/mbc.e12-04-0329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sialomucin endolyn is implicated in adhesion, migration, and differentiation of various cell types. Apical delivery of endolyn requires recognition of sialic acids on its N-glycans possibly (or likely) mediated by galectin-9. The sialomucin endolyn is implicated in adhesion, migration, and differentiation of various cell types. Along rat kidney tubules, endolyn is variously localized to the apical surface and endosomal/lysosomal compartments. Apical delivery of newly synthesized rat endolyn predominates over direct lysosomal delivery in polarized Madin–Darby canine kidney cells. Apical sorting depends on terminal processing of a subset of lumenal N-glycans. Here we dissect the requirements of N-glycan processing for apical targeting and investigate the underlying mechanism. Modulation of glycan branching and subsequent polylactosamine elongation by knockdown of N-acetylglucosaminyltransferase III or V had no effect on apical delivery of endolyn. In contrast, combined but not individual knockdown of sialyltransferases ST3Gal-III, ST3Gal-IV, and ST6Gal-I, which together are responsible for addition of α2,3- and α2,6-linked sialic acids on N-glycans, dramatically decreased endolyn surface polarity. Endolyn synthesized in the presence of kifunensine, which blocks terminal N-glycan processing, reduced its interaction with several recombinant canine galectins, and knockdown of galectin-9 (but not galectin-3, -4, or -8) selectively disrupted endolyn polarity. Our data suggest that sialylation enables recognition of endolyn by galectin-9 to mediate efficient apical sorting. They raise the intriguing possibility that changes in glycosyltransferase expression patterns and/or galectin-9 distribution may acutely modulate endolyn trafficking in the kidney.
Collapse
Affiliation(s)
- Di Mo
- Renal Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rbaibi Y, Cui S, Mo D, Carattino M, Rohatgi R, Satlin LM, Szalinski CM, Swanhart LM, Fölsch H, Hukriede NA, Weisz OA. OCRL1 modulates cilia length in renal epithelial cells. Traffic 2012; 13:1295-305. [PMID: 22680056 DOI: 10.1111/j.1600-0854.2012.01387.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/18/2023]
Abstract
Lowe syndrome is an X-linked disorder characterized by cataracts at birth, mental retardation and progressive renal malfunction that results from loss of function of the OCRL1 (oculocerebrorenal syndrome of Lowe) protein. OCRL1 is a lipid phosphatase that converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The renal pathogenesis of Lowe syndrome patients has been suggested to result from alterations in membrane trafficking, but this cannot fully explain the disease progression. We found that knockdown of OCRL1 in zebrafish caused developmental defects consistent with disruption of ciliary function, including body axis curvature, pericardial edema, hydrocephaly and impaired renal clearance. In addition, cilia in the proximal tubule of the zebrafish pronephric kidney were longer in ocrl morphant embryos. We also found that knockdown of OCRL1 in polarized renal epithelial cells caused elongation of the primary cilium and disrupted formation of cysts in three-dimensional cultures. Calcium release in response to ATP was blunted in OCRL1 knockdown cells, suggesting changes in signaling that could lead to altered cell function. Our results suggest a new role for OCRL1 in renal epithelial cell function that could contribute to the pathogenesis of Lowe syndrome.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mattila PE, Youker RT, Mo D, Bruns JR, Cresawn KO, Hughey RP, Ihrke G, Weisz OA. Multiple biosynthetic trafficking routes for apically secreted proteins in MDCK cells. Traffic 2011; 13:433-42. [PMID: 22118573 DOI: 10.1111/j.1600-0854.2011.01315.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022]
Abstract
Many newly synthesized membrane proteins traverse endocytic intermediates en route to the surface in polarized epithelial cells; however, the biosynthetic itinerary of secreted proteins has not been elucidated. We monitored the trafficking route of two secreted proteins with different apical sorting signals: the N-glycan-dependent cargo glycosylated growth hormone (gGH) and Ensol, a soluble version of endolyn whose apical sorting is independent of N-glycans. Both proteins were observed to colocalize in part with apical recycling endosome (ARE) markers. Cargo that lacks an apical targeting signal and is secreted in a nonpolarized manner did not localize to the ARE. Expression of a dominant-negative mutant of myosin Vb, which disrupts ARE export of glycan-dependent membrane proteins, selectively inhibited apical release of gGH but not Ensol. Fluorescence recovery after photobleaching (FRAP) measurements revealed that gGH in the ARE was less mobile than Ensol, consistent with tethering to a sorting receptor. However, knockdown of galectin-3 or galectin-4, lectins implicated in apical sorting, had no effect on the rate or polarity of gGH secretion. Together, our results suggest that apically secreted cargoes selectively access the ARE and are exported via differentially regulated pathways.
Collapse
Affiliation(s)
- Polly E Mattila
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kinlough CL, Poland PA, Gendler SJ, Mattila PE, Mo D, Weisz OA, Hughey RP. Core-glycosylated mucin-like repeats from MUC1 are an apical targeting signal. J Biol Chem 2011; 286:39072-81. [PMID: 21937430 DOI: 10.1074/jbc.m111.289504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MUC1 is efficiently delivered to the apical surface of polarized Madin-Darby canine kidney (MDCK) cells by transit through apical recycling endosomes, a route associated with delivery of apical proteins with glycan-dependent targeting signals. However, a role for glycans in MUC1 sorting has not been established. A key feature of MUC1 is a heavily O-glycosylated mucin-like domain with a variable number of nearly perfect tandem repeats and adjacent imperfect repeats. Metabolic labeling, cell surface biotinylation, immobilized lectins, and confocal immunofluorescence microscopy were used to characterize the polarized delivery of MUC1 mutants and chimeras in MDCK cells to identify the apical targeting signal. Both the interleukin-2 receptor α subunit (Tac) and a chimera where the Tac ectodomain replaced that of MUC1 were delivered primarily to the basolateral surface. Attachment of the MUC1 mucin-like domain to the N terminus of Tac enhanced apical but not basolateral delivery when compared with Tac. Conversely, deletions within the mucin-like domain in MUC1 reduced apical but not basolateral delivery when compared with MUC1. In pull-down assays with lectins, we found a notable difference in the presence of core 1 O-glycans, but not poly-N-acetyllactosamine, in apically targeted MUC1 and chimeras when compared with Tac. Consistent with these data, we found no effect on MUC1 targeting when galectin-3, with preference for poly-N-acetyllactosamine, was depleted from polarized MDCK cells. However, we did block the apical targeting activity of the mucin-like repeats when we overexpressed CMP-Neu5Ac:GalNAc-Rα2,6-sialyltransferase-1 to block core O-glycan synthesis. The cumulative data indicate that the core-glycosylated mucin-like repeats of MUC1 constitute an apical targeting signal.
Collapse
Affiliation(s)
- Carol L Kinlough
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Mello de Queiroz F, Sánchez A, Agarwal JR, Stühmer W, Pardo LA. Nucleofection induces non-specific changes in the metabolic activity of transfected cells. Mol Biol Rep 2011; 39:2187-94. [PMID: 21643953 PMCID: PMC3271208 DOI: 10.1007/s11033-011-0967-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/26/2011] [Indexed: 11/09/2022]
Abstract
Transfection has become an everyday technique widely used for functional studies in living cells. The choice of the particular transfection method is usually determined by its efficiency and toxicity, and possible functional consequences specific to the method used are normally overlooked. We describe here that nucleofection, a method increasingly used because of its convenience and high efficiency, increases the metabolic rate of some cancer cells, which can be misleading when used as a measure of proliferation. Moreover, nucleofection can alter the subcellular expression pattern of the transfected protein. These undesired effects are independent of the transfected nucleic acid, but depend on the particular cell line used. Therefore, the interpretation of functional data using this technology requires further controls and caution.
Collapse
Affiliation(s)
- Fernanda Mello de Queiroz
- Max-Planck-Institut für experimentelle Medizin, Abteilung Molekulare Biologie Neuronaler Signale, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|