1
|
Zarychta J, Kowalczyk A, Słowik K, Przywara D, Petniak A, Kondracka A, Wójtowicz-Marzec M, Słyk-Gulewska P, Kwaśniewska A, Kocki J, Gil-Kulik P. Pilot Study on the Effect of Patient Condition and Clinical Parameters on Hypoxia-Induced Factor Expression: HIF1A, EPAS1 and HIF3A in Human Colostrum Cells. Int J Mol Sci 2024; 25:11042. [PMID: 39456823 PMCID: PMC11507067 DOI: 10.3390/ijms252011042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) may play a role in mammary gland development, milk production and secretion in mammals. Due to the limited number of scientific reports on the expression of HIF genes in colostrum cells, it was decided to examine the expression of HIF1A, HIF3A and EPAS1 in the these cells, collected from 35 patients who voluntarily agreed to provide their biological material for research, were informed about the purpose of the study and signed a consent to participate in it. The expression of HIF genes was assessed using qPCR. Additionally, the influence of clinical parameters (method of delivery, occurrence of stillbirths in previous pregnancies, BMI level before pregnancy and at the moment of delivery, presence of hypertension during pregnancy, presence of Escherichia coli in vaginal culture, iron supplement and heparin intake during pregnancy) on the gene expression was assessed, revealing statistically significant correlations. The expression of HIF1A was 3.5-fold higher in the case of patients with the presence of E. coli in vaginal culture (p = 0.041) and 2.5 times higher (p = 0.031) in samples from women who used heparin during pregnancy. Approximately 1.7-fold higher expression of the EPAS1 was observed in women who did not supplement iron during pregnancy (p = 0.046). To our knowledge, these are the first studies showing the relationship between HIF expression in cells from breast milk and the method of delivery and health condition of women giving birth. The assessment of HIF expression requires deeper examination in a larger study group, and the results of further studies will allow to determine whether HIF can become biomarkers in pregnancy pathology states.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Adrian Kowalczyk
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Karolina Słowik
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
| | - Dominika Przywara
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Monika Wójtowicz-Marzec
- Chair and Department of Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Patrycja Słyk-Gulewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| |
Collapse
|
2
|
Herrera-Espejo S, Domínguez-Miranda JL, Rodríguez-Mogollo JI, Pachón J, Cordero E, Pachón-Ibáñez ME. Effects of pH on the Pathogenicity of Escherichia coli and Klebsiella pneumoniae on the Kidney: In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7925. [PMID: 39063167 PMCID: PMC11277208 DOI: 10.3390/ijms25147925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Urine pH reflects the functional integrity of the body and may influence the virulence of uropathogenic Escherichia coli and Klebsiella pneumoniae, the main causes of urinary tract infections (UTIs). This study evaluated the effects of acidic pH on the pathogenicity of uropathogenic E. coli and K. pneumoniae strains, in vitro and in vivo. Four uropathogenic E. coli and four K. pneumoniae strains were used. Biofilm formation, growth competition indices, motility, and adhesion and invasion of human renal cells were analyzed in media with acidic, neutral, and alkaline pH. A murine lower UTI model was used, with urine adjusted to acidic, neutral, or alkaline pH. At acidic pH, E. coli and K. pneumoniae exhibited higher bacterial concentrations in the kidneys and systemic symptoms, including bacteremia. Alkaline urine pH did not affect bacterial concentrations of any strain. In mice with UTIs caused by E. coli Nu14 and K. pneumoniae HUVR42 and acidic urine pH, histopathological studies of the kidneys showed acute inflammation affecting the urothelium and renal parenchyma, which are traits of acute pyelonephritis. These results indicate that acidic pH could increase the pathogenicity of E. coli and K. pneumoniae in murine models of lower UTI, promoting renal infection and acute inflammation.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | | | - Juan Ignacio Rodríguez-Mogollo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 PMCID: PMC11923798 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
4
|
Schwaderer AL, Rajadhyaksha E, Canas J, Saxena V, Hains DS. Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Arch 2024; 476:565-578. [PMID: 38227050 DOI: 10.1007/s00424-024-02905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.
Collapse
Affiliation(s)
- Andrew L Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA.
| | - Evan Rajadhyaksha
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Jorge Canas
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Vijay Saxena
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - David S Hains
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Chelangarimiyandoab F, Mungara P, Batta M, Cordat E. Urinary Tract Infections: Renal Intercalated Cells Protect against Pathogens. J Am Soc Nephrol 2023; 34:1605-1614. [PMID: 37401780 PMCID: PMC10561816 DOI: 10.1681/asn.0000000000000187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Urinary tract infections affect more than 1 in 2 women during their lifetime. Among these, more than 10% of patients carry antibiotic-resistant bacterial strains, highlighting the urgent need to identify alternative treatments. While innate defense mechanisms are well-characterized in the lower urinary tract, it is becoming evident that the collecting duct (CD), the first renal segment encountered by invading uropathogenic bacteria, also contributes to bacterial clearance. However, the role of this segment is beginning to be understood. This review summarizes the current knowledge on CD intercalated cells in urinary tract bacterial clearance. Understanding the innate protective role of the uroepithelium and of the CD offers new opportunities for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Forough Chelangarimiyandoab
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine & Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
7
|
Cartwright IM, Dowdell AS, Hanson C, Kostelecky RE, Welch N, Steiner CA, Colgan SP. Contact-dependent, polarized acidification response during neutrophil-epithelial interactions. J Leukoc Biol 2022; 112:1543-1553. [PMID: 35674095 PMCID: PMC9701153 DOI: 10.1002/jlb.3ma0422-742r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophil (PMN) infiltration during active inflammation imprints changes in the local tissue environment. Such responses are often accompanied by significant extracellular acidosis that result in predictable transcriptional responses. In this study, we explore the mechanisms involved in inflammatory acidification as a result of PMN-intestinal epithelial cell (IEC) interactions. Using recently developed tools, we revealed that PMN transepithelial migration (TEM)-associated inflammatory acidosis is dependent on the total number of PMNs present during TEM and is polarized toward the apical surface. Extending these studies, we demonstrate that physical separation of the PMNs and IECs prevented acidification, whereas inhibition of PMN TEM using neutralizing antibodies enhanced extracellular acidification. Utilizing pharmaceutical inhibitors, we demonstrate that the acidification response is independent of myeloperoxidase and dependent on reactive oxygen species generated during PMN TEM. In conclusion, inflammatory acidosis represents a polarized PMN-IEC-dependent response by an as yet to be fully determined mechanism.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Camila Hanson
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Rachael E. Kostelecky
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Welch
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Calen A. Steiner
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
8
|
Purkerson JM, Everett CA, Schwartz GJ. Ammonium chloride-induced acidosis exacerbates cystitis and pyelonephritis caused by uropathogenic E. coli. Physiol Rep 2022; 10:e15471. [PMID: 36151614 PMCID: PMC9508385 DOI: 10.14814/phy2.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023] Open
Abstract
Acute pyelonephritis caused by uropathogenic E. coli (UPEC) can cause renal scarring and lead to development of chronic kidney disease. Prevention of kidney injury requires an understanding of host factors and/or UPEC adaptive responses that are permissive for UPEC colonization of the urinary tract. Although some studies have suggested urine acidification limits UPEC growth in culture, other studies have described acid-resistance mechanisms (AR) in E. coli such as the CadC/CadBA module that promotes adaptation to acid and nitrosative stress. Herein we confirm and extend our previous study by demonstrating that despite urine acidification, metabolic acidosis induced by dietary ammonium chloride (NH4 Cl-A) exacerbates cystitis and pyelonephritis in innate immune competent (C3H-HeN) mice characterized by: (1) markedly elevated UPEC burden and increased chemokine/cytokine and NOS2 mRNA expression, (2) accumulation of intravesicular debris noninvasively detected by Power Doppler Ultrasound (PDUS), and (3) collecting duct (CD) dysfunction that manifests as a urine concentration defect. Bladder debris and CD dysfunction were due to the inflammatory response, as neither was observed in Tlr4-deficient (C3H-HeJ) mice. The effect of NH4 Cl-A was unrelated to acidosis as dietary administration of hydrochloric acid (HCl-A) yielded a comparable acid-base status yet did not increase UPEC burden. NH4 Cl-A increased polyamines and decreased nitric oxide (NO) metabolites in urine indicating that excess dietary ammonium shifts arginine metabolism toward polyamines at the expense of NO synthesis. Furthermore, despite increased expression of NOS2, NO production post UPEC infection was attenuated in NH4 Cl-A mice compared to controls. Thus, in addition to induction of metabolic acidosis and urine acidification, excess dietary ammonium alters the polyamine:NO balance and thereby compromises NOS2-mediated innate immune defense.
Collapse
Affiliation(s)
- Jeffrey M. Purkerson
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Coralee A. Everett
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - George J. Schwartz
- Pediatric NephrologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Strong Children's Research CenterUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
9
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
10
|
Mohanty S, Kamolvit W, Zambrana S, Gonzales E, Tovi J, Brismar K, Östenson CG, Brauner A. HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients. J Mol Med (Berl) 2021; 100:101-113. [PMID: 34651203 PMCID: PMC8724101 DOI: 10.1007/s00109-021-02134-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Abstract Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1β, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. Key messages • Mohanty et al. “HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients.” • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1β and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02134-7.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Eduardo Gonzales
- Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
11
|
Purkerson JM, Corley JL, Schwartz GJ. Metabolic acidosis exacerbates pyelonephritis in mice prone to vesicoureteral reflux. Physiol Rep 2021; 8:e14525. [PMID: 33030238 PMCID: PMC7543054 DOI: 10.14814/phy2.14525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Acute pyelonephritis is a common, serious bacterial infection in children. The prevalence of acute pyelonephritis is due at least in part to vesicoureteral reflux (VUR). Although an association between abnormalities in electrolyte and acid–base balance and pyelonephritis is common in young children, the impact of metabolic acidosis (MA) on progression of acute pyelonephritis is not fully understood. In this study, the effect of MA on pyelonephritis was studied in C3H mouse strains prone to VUR. MA induced by ammonium chloride supplementation in food specifically impaired clearance of urinary tract infection with uropathogenic Escherichia. coli (UPEC‐UTI) in innate immune competent C3H strains (HeOuJ, HeN), whereas kidney UPEC burden in Tlr‐4‐deficient HeJ mice was unaffected. Antibody‐mediated depletion of myeloid cells (monocytes, neutrophil) markedly increased UPEC burden in the bladder and kidney confirming the pivotal role of neutrophils and tissue‐resident macrophages in clearance of UPEC‐UTI. MA concurrent with UPEC‐UTI markedly increased expression of cytokine (TNFα, IL‐1β, IL‐6) and chemokine (CXCL 1, 2, and 5) mRNA in isolated kidney CD cells and kidney neutrophil infiltrates were increased four‐ to fivefold compared to normal, UPEC‐infected mice. Thus, MA intensified pyelonephritis and increased the risk of kidney injury by impairing clearance of UPEC‐UTI and potentiating renal inflammation characterized by an elevated kidney neutrophil infiltrate.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Janine L Corley
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - George J Schwartz
- Pediatric Nephrology, University of Rochester Medical Center, Rochester, NY, USA.,Strong Children's Research Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Bender K, Schwartz LL, Cohen A, Vasquez CM, Murtha MJ, Eichler T, Thomas JP, Jackson A, Spencer JD. Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am J Physiol Renal Physiol 2021; 320:F972-F983. [PMID: 33818125 PMCID: PMC8174806 DOI: 10.1152/ajprenal.00592.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are essential host defense mechanisms that prevent urinary tract infections. Recent studies have demonstrated that peptides in the ribonuclease A superfamily have antimicrobial activity against uropathogens and protect the urinary tract from uropathogenic Escherichia coli (UPEC). Little is known about the antibacterial function or expression of ribonuclease 4 (RNase 4) in the human urinary tract. Here, we show that full-length recombinant RNase 4 peptide and synthetic amino-terminal RNase 4 peptide fragment have antibacterial activity against UPEC and multidrug-resistant (MDR)-UPEC. RNASE4 transcript expression was detected in human kidney and bladder tissue using quantitative real-time PCR. Immunostaining or in situ hybridization localized RNase 4 expression to proximal tubules, principal and intercalated cells in the kidney's collecting duct, and the bladder urothelium. Urinary RNase 4 concentrations were quantified in healthy controls and females with a history of urinary tract infection. Compared with controls, urinary RNase 4 concentrations were significantly lower in females with a history of urinary tract infection. When RNase 4 was neutralized in human urine or silenced in vitro using siRNA, urinary UPEC replication or attachment to and invasion of urothelial and kidney medullary cells increased. These data show that RNase 4 has antibacterial activity against UPEC, is expressed in the human urinary tract, and can contribute to host defense against urinary tract infections.NEW & NOTEWORTHY Ribonuclease 4 (RNase 4) is a newly identified host defense peptide in the human kidney and bladder. RNase 4 kills uropathogenic Escherichia coli (UPEC) and multidrug-resistant UPEC. RNase 4 prevents invasive UPEC infection and suppressed RNase 4 expression may be a risk factor for more severe or recurrent urinary tract infection.
Collapse
Affiliation(s)
- Kristin Bender
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Laura L Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Ariel Cohen
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudia Mosquera Vasquez
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Matthew J Murtha
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Tad Eichler
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Jason P Thomas
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Jackson
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
13
|
Lipopolysaccharide directly inhibits bicarbonate absorption by the renal outer medullary collecting duct. Sci Rep 2020; 10:20548. [PMID: 33239624 PMCID: PMC7689453 DOI: 10.1038/s41598-020-77363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Acidosis is associated with E. coli induced pyelonephritis but whether bacterial cell wall constituents inhibit HCO3 transport in the outer medullary collecting duct from the inner stripe (OMCDi) is not known. We examined the effect of lipopolysaccharide (LPS), on HCO3 absorption in isolated perfused rabbit OMCDi. LPS caused a ~ 40% decrease in HCO3 absorption, providing a mechanism for E. coli pyelonephritis-induced acidosis. Monophosphoryl lipid A (MPLA), a detoxified TLR4 agonist, and Wortmannin, a phosphoinositide 3-kinase inhibitor, prevented the LPS-mediated decrease, demonstrating the role of TLR4-PI3-kinase signaling and providing proof-of-concept for therapeutic interventions aimed at ameliorating OMCDi dysfunction and pyelonephritis-induced acidosis.
Collapse
|
14
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|