1
|
Zhu Y, Xie G, Qi F, Tang S, Xun W. CD73 alleviates podocytes injury in adriamycin-induced nephrotic syndrome. Tissue Cell 2025; 93:102647. [PMID: 39637490 DOI: 10.1016/j.tice.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Podocyte injury is considered one of the main causes of kidney diseases occurrence and development. We have demonstrated that Ecto-5'-Nucleotidase (CD73) upregulated during podocyte injury, yet its function in podocyte is still unclear. Mouse podocytes cell line (MPC5) were exposed to the adriamycin (ADR, 0.25 μg/ml) to establish the model of podocytes injury, as well as low expression CD73 with lentivirus transfected shRNA. CD73 expression was verified by western blot and immunofluorescence assay. Cytokines (IL-1β, IL-18), apoptosis and apoposis-related protein (Bax, Caspase-3, Desmin) levels were measured using ELISA assay, Flow cytometry and Western blot, respectively. CD73, the cytokines of IL-1β and IL-18, apoptosis rate and the expression of Bax, Caspase-3 and Desmin were significantly increased in ADR group compared with the control group. Moreover, we also successfully constructed a CD73 down-expressed podocytes cell line. However, in comparsion with the ADR group, the cytokines of IL-1β and IL-18, apoptosis rate and the expression of Bax, Caspase-3 and Desmin protein were remarkably lowered in the ADR+CD73 shRNA group. These findings demonstrate that CD73 alleviates podocyte damage by reducing the inflammation and increasing apoptosis.
Collapse
Affiliation(s)
- Yanji Zhu
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - Guiling Xie
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - Fangyan Qi
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - ShenWei Tang
- College of Clinical Medicine, Jining Medical University, Jining 272000, PR China
| | - Wenlong Xun
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China.
| |
Collapse
|
2
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Yamashita N, Kramann R. Mechanisms of kidney fibrosis and routes towards therapy. Trends Endocrinol Metab 2024; 35:31-48. [PMID: 37775469 DOI: 10.1016/j.tem.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney diseases (CKDs) and is therefore considered to be a promising therapeutic target for these conditions. However, despite great progress in recent years, no targeted antifibrotic therapies for the kidney have been approved, likely because the complex mechanisms that initiate and drive fibrosis are not yet completely understood. Recent single-cell genomic approaches have allowed novel insights into kidney fibrosis mechanisms in mouse and human, particularly the heterogeneity and differentiation processes of myofibroblasts, the role of injured epithelial cells and immune cells, and their crosstalk mechanisms. In this review we summarize the key mechanisms that drive kidney fibrosis, including recent advances in understanding the mechanisms, as well as potential routes for developing novel targeted antifibrotic therapeutics.
Collapse
Affiliation(s)
- Noriyuki Yamashita
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Liu TT, Wang YL, Zhang Z, Jia LX, Zhang J, Zheng S, Chen ZH, Shen HH, Piao CM, Du J. Abnormal adenosine metabolism of neutrophils inhibits airway inflammation and remodeling in asthma model induced by Aspergillus fumigatus. BMC Pulm Med 2023; 23:258. [PMID: 37452319 PMCID: PMC10347753 DOI: 10.1186/s12890-023-02553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, β-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Yue-Li Wang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| |
Collapse
|
6
|
Chen L, Sha ML, Chen FT, Jiang CY, Li D, Xu CL, Pan DS, Xu ZJ, Tang QL, Xia SJ, Sun LH, Fan GJ, Shao Y. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARα-mediated fatty acid oxidation. Free Radic Biol Med 2023; 195:132-144. [PMID: 36584797 DOI: 10.1016/j.freeradbiomed.2022.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is essential during the development of end-stage kidney disease (ESKD) and is associated with the impairment of fatty acid oxidation (FAO). Kruppel-like factor 14 (KLF14) is an important gene in lipid metabolism, but its role in TIF remains unknown. TGF-β-stimulated HK-2 cells and mouse unilateral ureteral obstruction (UUO) were used as renal fibrosis models. The role of KLF14 in the process of renal fibrosis was verified by gene knockout mice, genetic or pharmacological interference in animal model and cell model respectively. In the current study, we found that KLF14 expression increased after activation of the TGF-β signaling pathway during TIF. In KLF14-/- mice, more severe fibrosis was observed after unilateral ureteral obstruction (UUO) was induced. In human HK2 cells, knockdown of KLF14 led to more severe fibrosis induced by TGF-β1, while overexpression of KLF14 partially attenuated this process. Specifically, KLF14 deficiency decreased mitochondrial FAO activity, resulting in lipid accumulation. Thus, the energy supply to the cells was insufficient, finally resulting in TIF. We further proved that KLF14 could target peroxisome proliferator activated receptor alpha (PPARα) as a transcriptional activator. This study identified the upregulation of KLF14 expression in response to kidney stress during the process of fibrosis. Upon TIF, the activated TGF-β signaling pathway can enhance KLF14 expression, while the upregulation of KLF14 expression can decrease the degree of TIF by improving FAO activity in tubular epithelial cells and recovering the energy supply mediated by PPARα.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Lei Sha
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - De-Shen Pan
- Laboratory of Cancer Genomics and Biology, Department of Urology, And Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zi-Jie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Lin Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Hui Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Guang-Jian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Cao G, Miao H, Wang YN, Chen DQ, Wu XQ, Chen L, Guo Y, Zou L, Vaziri ND, Li P, Zhao YY. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacol Sin 2022; 43:2929-2945. [PMID: 35577910 PMCID: PMC9622813 DOI: 10.1038/s41401-022-00914-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/17/2022] [Indexed: 12/29/2022]
Abstract
Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-β-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.
Collapse
Affiliation(s)
- Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Dan-Qian Chen
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Beijing, 100029, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, NM, 87131, USA
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA, 92897, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Beijing, 100029, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
9
|
Inoue T, Nakamura Y, Tanaka S, Kohro T, Li LX, Huang L, Yao J, Kawamura S, Inoue R, Nishi H, Fukaya D, Uni R, Hasegawa S, Inagi R, Umene R, Wu CH, Ye H, Bajwa A, Rosin DL, Ishihara K, Nangaku M, Wada Y, Okusa MD. Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis. Front Med (Lausanne) 2022; 9:993698. [PMID: 36267620 PMCID: PMC9576863 DOI: 10.3389/fmed.2022.993698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Takahide Kohro
- Department of Clinical Informatics/Cardiology, Jichi Medical University, Tochigi, Japan
| | - Lisa X. Li
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suzuka Kawamura
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Reiko Inoue
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Fukaya
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Uni
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Mark D. Okusa,
| |
Collapse
|
10
|
Tanaka S, Zheng S, Kharel Y, Fritzemeier RG, Huang T, Foster D, Poudel N, Goggins E, Yamaoka Y, Rudnicka KP, Lipsey JE, Radel HV, Ryuh SM, Inoue T, Yao J, Rosin DL, Schwab SR, Santos WL, Lynch KR, Okusa MD. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci Transl Med 2022; 14:eabj2681. [PMID: 35976996 PMCID: PMC9873476 DOI: 10.1126/scitranslmed.abj2681] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Russell G. Fritzemeier
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Daniel Foster
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yusuke Yamaoka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kinga P. Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jonathan E. Lipsey
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hope V. Radel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Sophia M. Ryuh
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, NY, New York 10016, USA
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Corresponding author.
| |
Collapse
|
11
|
The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases. Int J Mol Sci 2021; 22:ijms222312766. [PMID: 34884572 PMCID: PMC8657456 DOI: 10.3390/ijms222312766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and the circulation of degraded products. The dysfunction of autophagy can lead to the pathology of many human diseases. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and can induce caspase-1 activation, thus leading to the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. It has been reported that the interplay between autophagy and NLRP3 inflammasome is involved in many diseases, including renal diseases. In this review, the interplay between autophagy and the NLRP3 inflammasome and the mechanisms in renal diseases are explored to provide ideas for relevant basic research in the future.
Collapse
|
12
|
Zhou HY, Sui H, Zhao YJ, Qian HJ, Yang N, Liu L, Guan Q, Zhou Y, Lin HL, Wang DP. The Impact of Inflammatory Immune Reactions of the Vascular Niche on Organ Fibrosis. Front Pharmacol 2021; 12:750509. [PMID: 34776968 PMCID: PMC8585779 DOI: 10.3389/fphar.2021.750509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inflammation is a type of defense response against tissue damage, and can be mediated by lymphocytes and macrophages. Fibrosis is induced by tissue injury and inflammation, which leads to an increase in fibrous connective tissue in organs and a decrease in organ parenchyma cells, finally leading to organ dysfunction or even failure. The vascular niche is composed of endothelial cells, pericytes, macrophages, and hematopoietic stem cells. It forms a guiding microenvironment for the behavior of adjacent cells, and mainly exists in the microcirculation, including capillaries. When an organ is damaged, the vascular niche regulates inflammation and affects the repair of organ damage in a variety of ways, such as via its angiocrine function and transformation of myofibroblasts. In this paper, the main roles of vascular niche in the process of organ fibrosis and its mechanism of promoting the progress of fibrosis through inflammatory immunoregulation are summarized. It was proposed that the vascular niche should be regarded as a new therapeutic target for organ fibrosis, suggesting that antifibrotic effects could be achieved by regulating macrophages, inhibiting endothelial-mesenchymal transition, interfering with the angiocrine function of endothelial cells, and inhibiting the transformation of pericytes into myofibroblasts, thus providing new ideas for antifibrosis drug research.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hua Sui
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang-Jianing Zhao
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong-Jie Qian
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nan Yang
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lu Liu
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qing Guan
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yue Zhou
- Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hong-Li Lin
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Da-Peng Wang
- Institude college of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of Nephrology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021; 24:103112. [PMID: 34622165 PMCID: PMC8479790 DOI: 10.1016/j.isci.2021.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The kidney local microenvironment (KLM) plays a critical role in the pathogenesis of kidney fibrosis. However, the composition and regulation of a fibrotic KLM remain unclear. Through a multidisciplinary approach, we investigated the roles of the hepatocyte growth factor/c-met signaling pathway in regulating KLM formation in various chronic kidney disease (CKD) models. We performed a retrospective analysis of single-cell RNA sequencing data and determined that tubular epithelial cells and macrophages are two major cell populations in a fibrotic kidney. We then created a mathematical model that predicted loss of c-met in tubular cells would cause greater responses to injury than loss of c-met in macrophages. By generating c-met conditional knockout mice, we validated that loss of c-met influences epithelial plasticity, myofibroblast activation, and extracellular matrix synthesis/degradation, which ultimately determined the characteristics of the fibrotic KLM. Our findings open the possibility of designing effective therapeutic strategies to retard CKD.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheldon Ira Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yi Qiao
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher Bonin
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Geneva Hargis
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Partha Sarathi Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
14
|
Xia W, He Y, Gan Y, Zhang B, Dai G, Ru F, Jiang Z, Chen Z, Chen X. Long Non-coding RNA: An Emerging Contributor and Potential Therapeutic Target in Renal Fibrosis. Front Genet 2021; 12:682904. [PMID: 34386039 PMCID: PMC8353329 DOI: 10.3389/fgene.2021.682904] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.
Collapse
Affiliation(s)
- Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zexiang Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Davidson A. Renal Mononuclear Phagocytes in Lupus Nephritis. ACR Open Rheumatol 2021; 3:442-450. [PMID: 34060247 PMCID: PMC8280821 DOI: 10.1002/acr2.11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
Renal mononuclear phagocytes are a highly pleiotropic group of immune cells of myeloid origin that play multiple protective and pathogenic roles in tissue homeostasis, inflammation, repair, and fibrosis. Infiltration of kidneys with these cells is a hallmark of lupus nephritis and is associated with more severe disease and with increased risk of progression to end‐stage renal disease. This review presents current knowledge of the diversity of these cells and their involvement in kidney inflammation and resolution and describes how they contribute to the chronic inflammation of lupus nephritis. A better understanding of the subset heterogeneity and diverse functions of mononuclear phagocytes in the lupus nephritis kidney should provide fertile ground for the development of new therapeutic approaches that promote the differentiation and survival of protective subsets while targeting pathogenic cell subsets that cause inflammation and fibrosis.
Collapse
Affiliation(s)
- Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, New York
| |
Collapse
|
16
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
17
|
Hering L, Rahman M, Potthoff SA, Rump LC, Stegbauer J. Role of α2-Adrenoceptors in Hypertension: Focus on Renal Sympathetic Neurotransmitter Release, Inflammation, and Sodium Homeostasis. Front Physiol 2020; 11:566871. [PMID: 33240096 PMCID: PMC7680782 DOI: 10.3389/fphys.2020.566871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
The kidney is extensively innervated by sympathetic nerves playing an important role in the regulation of blood pressure homeostasis. Sympathetic nerve activity is ultimately controlled by the central nervous system (CNS). Norepinephrine, the main sympathetic neurotransmitter, is released at prejunctional neuroeffector junctions in the kidney and modulates renin release, renal vascular resistance, sodium and water handling, and immune cell response. Under physiological conditions, renal sympathetic nerve activity (RSNA) is modulated by peripheral mechanisms such as the renorenal reflex, a complex interaction between efferent sympathetic nerves, central mechanism, and afferent sensory nerves. RSNA is increased in hypertension and, therefore, critical for the perpetuation of hypertension and the development of hypertensive kidney disease. Renal sympathetic neurotransmission is not only regulated by RSNA but also by prejunctional α2-adrenoceptors. Prejunctional α2-adrenoceptors serve as autoreceptors which, when activated by norepinephrine, inhibit the subsequent release of norepinephrine induced by a sympathetic nerve impulse. Deletion of α2-adrenoceptors aggravates hypertension ultimately by modulating renal pressor response and sodium handling. α2-adrenoceptors are also expressed in the vasculature, renal tubules, and immune cells and exert thereby effects related to vascular tone, sodium excretion, and inflammation. In the present review, we highlight the role of α2-adrenoceptors on renal sympathetic neurotransmission and its impact on hypertension. Moreover, we focus on physiological and pathophysiological functions mediated by non-adrenergic α2-adrenoceptors. In detail, we discuss the effects of sympathetic norepinephrine release and α2-adrenoceptor activation on renal sodium transporters, on renal vascular tone, and on immune cells in the context of hypertension and kidney disease.
Collapse
Affiliation(s)
- Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 2020; 117:20741-20752. [PMID: 32788346 DOI: 10.1073/pnas.1917663117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Collapse
|
19
|
van Dijk CGM, Brandt MM, Poulis N, Anten J, van der Moolen M, Kramer L, Homburg EFGA, Louzao-Martinez L, Pei J, Krebber MM, van Balkom BWM, de Graaf P, Duncker DJ, Verhaar MC, Luttge R, Cheng C. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix. LAB ON A CHIP 2020; 20:1827-1844. [PMID: 32330215 DOI: 10.1039/d0lc00059k] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic organ-on-a-chip designs are used to mimic human tissues, including the vasculature. Here we present a novel microfluidic device that allows the interaction of endothelial cells (ECs) with pericytes and the extracellular matrix (ECM) in full bio-matrix encased 3D vessel structures (neovessels) that can be subjected to continuous, unidirectional flow and perfusion with circulating immune cells. We designed a polydimethylsiloxane (PDMS) device with a reservoir for a 3D fibrinogen gel with pericytes. Open channels were created for ECs to form a monolayer. Controlled, continuous, and unidirectional flow was introduced via a pump system while the design facilitated 3D confocal imaging. In this vessel-on-a-chip system, ECs interact with pericytes to create a human cell derived blood vessel which maintains a perfusable lumen for up to 7 days. Dextran diffusion verified endothelial barrier function while demonstrating the beneficial role of supporting pericytes. Increased permeability after thrombin stimulation showed the capacity of the neovessels to show natural vascular response. Perfusion of neovessels with circulating THP-1 cells demonstrated this system as a valuable platform for assessing interaction between the endothelium and immune cells in response to TNFα. In conclusion: we created a novel vascular microfluidic device that facilitates the fabrication of an array of parallel soft-channel structures in ECM gel that develop into biologically functional neovessels without hard-scaffold support. This model provides a unique tool to conduct live in vitro imaging of the human vasculature during perfusion with circulating cells to mimic (disease) environments in a highly systematic but freely configurable manner.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, PO Box 85500, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cappelli C, Tellez A, Jara C, Alarcón S, Torres A, Mendoza P, Podestá L, Flores C, Quezada C, Oyarzún C, San Martín R. The TGF-β profibrotic cascade targets ecto-5'-nucleotidase gene in proximal tubule epithelial cells and is a traceable marker of progressive diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165796. [PMID: 32289379 DOI: 10.1016/j.bbadis.2020.165796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Progressive diabetic nephropathy (DN) and loss of renal function correlate with kidney fibrosis. Crosstalk between TGF-β and adenosinergic signaling contributes to the phenotypic transition of cells and to renal fibrosis in DN models. We evaluated the role of TGF-β on NT5E gene expression coding for the ecto-5`-nucleotidase CD73, the limiting enzyme in extracellular adenosine production. We showed that high d-glucose may predispose HK-2 cells towards active transcription of the proximal promoter region of the NT5E gene while additional TGF-β results in full activation. The epigenetic landscape of the NT5E gene promoter was modified by concurrent TGF-β with occupancy by the p300 co-activator and the phosphorylated forms of the Smad2/3 complex and RNA Pol II. Transcriptional induction at NT5E in response to TGF-β was earlier compared to the classic responsiveness genes PAI-1 and Fn1. CD73 levels and AMPase activity were concomitantly increased by TGF-β in HK-2 cells. Interestingly, we found increased CD73 content in urinary extracellular vesicles only in diabetic patients with renal repercussions. Further, CD73-mediated AMPase activity was increased in the urinary sediment of DN patients. We conclude that the NT5E gene is a target of the profibrotic TGF-β cascade and is a traceable marker of progressive DN.
Collapse
Affiliation(s)
- Claudio Cappelli
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Analia Tellez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Jara
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Angelo Torres
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Mendoza
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Loreto Podestá
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Flores
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|