1
|
Feitosa SM, Bortolini MAT, Salerno GRF, Bilhar APM, Ihara SSM, Simões MJ, Castro RA. Electrotherapy for urethral modulation: Are extracellular matrix molecules and growth factors potential targets? Neurourol Urodyn 2021; 40:968-977. [PMID: 33769595 DOI: 10.1002/nau.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
AIMS To evaluate the expression of genes and proteins involved in the urethral components: vessels, nerves, and extracellular matrix, in female rats after trauma by vaginal distension (VD) and after electrical stimulation therapy (electrotherapy). METHODS We analyzed the urethras of three groups of 18 female rats 30 days posttrauma by VD: control (no interventions); trauma (animals that had VD); and electrotherapy group (those that had VD and were treated with electrical stimulation). We compared the expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), collagen types I and III (COL1a1 and COL3a1), and lysyl-oxidase like 1 (LOXL1) among the groups. Real-time reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry were used for molecule quantification. We used the Kruskal-Wallis test and analysis of variance for statistical analyses with p < 0.05 for significance. RESULTS The COL1a1 gene expression was higher in the electrotherapy group than the trauma group (p = 0.036). COL3a1, VEGF, NGF, LOXL1 messenger RNA (mRNA) expression did not differ among the groups (p ≥ 0.05). COL1a1, COL3a1, VEGF, NGF, LOXL1 protein levels did not significantly differ among the groups (p ≥ 0.05) in Western blot analysis or immunohistochemistry assays. CONCLUSIONS Electrotherapy caused a long-term increase in the COL1a1 mRNA level but did not change COL1a1 protein expression or VEGF, NGF, COL3a1, and LOXL1 genes and proteins in the urethras of rats after trauma by VD.
Collapse
Affiliation(s)
- Suellen M Feitosa
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria A T Bortolini
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gisela R F Salerno
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andreisa P M Bilhar
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Gynecology, Universidade Federal do Ceará, Ceará, Brazil
| | - Silvia S M Ihara
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuel J Simões
- Department of Histology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo A Castro
- Department of Gynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials 2021; 269:120651. [PMID: 33476892 DOI: 10.1016/j.biomaterials.2021.120651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
This study addresses a crucial gap in the literature by characterising the relationship between urethral tissue mechanics, composition and gross structure. We then utilise these data to develop a biomimetic urethral scaffold with physical properties that more accurately mimic the native tissue than existing gold standard scaffolds; small intestinal submucosa (SIS) and urinary bladder matrix (UBM). Nine human urethra samples were mechanically characterised using pressure-diameter and uniaxial extension testing. The composition and gross structure of the tissue was determined using immunohistological staining. A pressure stiffening response is observed during the application of intraluminal pressure. The elastic and viscous tissue responses to extension are free of regional or directional variance. The elastin and collagen content of the tissue correlates significantly with tissue mechanics. Building on these data, a biomimetic urethral scaffold was fabricated from collagen and elastin in a ratio that mimics the composition of the native tissue. The resultant scaffold is comprised of a dense inner layer and a porous outer layer that structurally mimic the submucosa and corpus spongiosum layers of the native tissue, respectively. The porous outer layer facilitated more uniform cell infiltration relative to SIS and UBM when implanted subcutaneously (p < 0.05). The mechanical properties of the biomimetic scaffold better mimic the native tissue compared to SIS and UBM. The tissue characterisation data presented herein paves the way for the development of biomimetic urethral grafts, and the novel scaffold we develop demonstrates positive findings that warrant further in vivo evaluation.
Collapse
|
3
|
Brandt JS, Rosen T, Van Raalte H, Kurtenos V, Egorov V. Characterization of Perineum Elasticity and Pubic Bone-Perineal Critical Distance with a Novel Tactile Probe: Results of an Intraobserver Reproducibility Study. OPEN JOURNAL OF OBSTETRICS AND GYNECOLOGY 2020; 10:493-503. [PMID: 32395394 PMCID: PMC7213583 DOI: 10.4236/ojog.2020.1040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tactile imaging provides biomechanical mapping of soft tissues. Objective biomechanical and anatomical assessment of critical structures within the vagina and pelvis may allow development and validation of a clinical tool that could assist with clinical decisions regarding obstetrical procedures and mode of delivery. Objective: To assess intraobserver reproducibility of measurements of perineal elasticity and pubic bone-perineal critical distance with a novel tactile probe in pregnant women. METHODS An Antepartum Tactile Imager (ATI) was designed with a vaginal probe resembling a fetal skull. The probe comprises 128 tactile sensors on a double curved surface and measures 46 mm in width and 72 mm in length. The probe has a motion tracking sensor that allows acquisition of 3D tactile images. There were two arms of the study. In the first arm, biomechanical mapping of the perineum and pelvic bone location was performed in 10 non-pregnant women for purposes of demonstrating safety and feasibility. In the second arm, biomechanical mapping was performed in 10 pregnant women to explore intraobserver reproducibility. Each subject had two standardized examinations over 3 - 5 minutes by the same observer. Examination comfort and pain levels were assessed by post-procedure survey. Reproducibility was analyzed by intraclass correlation coefficients (ICC) with 95% confidence intervals and Bland-Altman plots. Bias and the 95% limits of agreement were also calculated. RESULTS The safety and feasibility arm of the study demonstrated high degree of safety and tolerability and reliable acquisition of tactile signals. In the reproducibility arm, 10 pregnant women were recruited at mean gestational age of 34.2 ± 6.5 weeks. The mean perineum elasticity (Young's modulus, E) was 9.8 ± 5.9 kPa, and the mean pubic bone-perineal critical distance (D) at 20 kPa load was 34.6 ± 6.2 mm. The ICC was 0.97 [95% confidence interval (CI) 0.91, 0.99] and 0.82 [CI 0.44, 0.95] for E and D respectively, consistent with excellent intrarater agreement. The bias and the 95% limits of agreement of E were -6.3% and -29.4% to +16.7%, respectively. The bias and the 95% limits of agreement of D were -2.6% and -25.3% to +20.2%, respectively. CONCLUSIONS The tactile imaging data obtained in the study reproducibly characterized perineal elasticity and pubic bone-perineal critical distance. Further evaluation of this tool in clinical settings is warranted.
Collapse
Affiliation(s)
- Justin S. Brandt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Todd Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | |
Collapse
|
4
|
Feng M, Wang Z, Liu Z, Liu D, Zheng K, Lu P, Liu C, Zhang M, Li J. The RyR–Cl
Ca
–VDCC axis contributes to spontaneous tone in urethral smooth muscle. J Cell Physiol 2019; 234:23256-23267. [PMID: 31161632 DOI: 10.1002/jcp.28892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mei Feng
- Central Laboratory Shandong Provincial Hospital Affiliated to Shandong University Jinan China
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
- Central Laboratory Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Zhaoyang Wang
- Operating Room Jinan Central Hospital Affiliated to Shandong University Jinan China
| | - Zheng Liu
- Department of Urology Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Donghai Liu
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Ping Lu
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medicine, Cheeloo College of Medicine Shandong University Jinan China
| | - Min Zhang
- Arts and Science Department University of Toronto Toronto Canada
| | - Jingxin Li
- Department of Physiology, School of Basic Medicine, Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
5
|
Sergeant GP, Hollywood MA, Thornbury KD. Spontaneous Activity in Urethral Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:149-167. [DOI: 10.1007/978-981-13-5895-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Bortolini MAT, Feitosa SM, Bilhar APM, Salerno GGR, Zanoteli E, Simões MJ, Castro RA. Molecular and histomorphological evaluation of female rats’ urethral tissues after an innovative trauma model of prolonged vaginal distention: immediate, short-term and long-term effects. Int Urogynecol J 2018; 30:465-476. [DOI: 10.1007/s00192-018-3634-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
|
7
|
Ashikari A, Miyazato M, Kimura R, Oshiro T, Saito S. The effect of tramadol on sneeze-induced urethral continence reflex through μ-opioid receptors in the spinal cord in rats. Neurourol Urodyn 2018; 37:1605-1611. [DOI: 10.1002/nau.23518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Asuka Ashikari
- Department of Urology; Graduate School of Medicine; University of the Ryukyus; Okinawa Japan
| | - Minoru Miyazato
- Department of Urology; Graduate School of Medicine; University of the Ryukyus; Okinawa Japan
| | - Ryu Kimura
- Department of Urology; Graduate School of Medicine; University of the Ryukyus; Okinawa Japan
| | - Takuma Oshiro
- Department of Urology; Graduate School of Medicine; University of the Ryukyus; Okinawa Japan
| | - Seiichi Saito
- Department of Urology; Graduate School of Medicine; University of the Ryukyus; Okinawa Japan
| |
Collapse
|
8
|
Natali AN, Carniel EL, Frigo A, Pavan PG, Todros S, Pachera P, Fontanella CG, Rubini A, Cavicchioli L, Avital Y, De Benedictis GM. Experimental investigation of the biomechanics of urethral tissues and structures. Exp Physiol 2016; 101:641-56. [PMID: 26864993 DOI: 10.1113/ep085476] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? Prostheses for treatment of urinary incontinence elicit complications associated with an inadequate mechanical action. This investigation aimed to define a procedure addressed to urethral mechanical characterization. Experimental tests are the basis for constitutive formulation, with a view to numerical modelling for investigation of the interaction between the tissues and a prosthesis. What is the main finding and its importance? Horse urethra, selected for its histomorphometric similarity to human urethra, was characterized by integrated histological analysis and mechanical tests on the biological tissue and structure, leading to constitutive formulation. A non-linear, anisotropic and time-dependent response was found, representing a valid basis for development of a numerical model to interpret the functional behaviour of the urethra. Urinary dysfunction can lead to incontinence, with an impact on the quality of life. Severe dysfunction can be overcome surgically by the use of an artificial urinary sphincter. Nonetheless, several complications may result from inappropriate functioning of the prosthesis, in many instances resulting from an unsuitable mechanical action of the device on the urethral tissues. Computational models allow investigation of the mechanical interaction between biological tissues and biomedical devices, representing a potential support for surgical practice and prosthesis design. The development of such computational tools requires experimental data on the mechanics of biological tissues and structures, which are rarely reported in the literature. The aim of this study was to provide a procedure for the mechanical characterization of urethral tissues and structures. The experimental protocol included the morphometric and histological analysis of urethral tissues, the mechanical characterization of the response of tissues to tensile and stress-relaxation tests and evaluation of the behaviour of urethral structures by inflation tests. Results from the preliminary experiments were processed, adopting specific model formulations, and also providing the definition of parameters that characterize the elastic and viscous behaviour of the tissues. Different experimental protocols, leading to a comprehensive set of experimental data, allow for a reciprocal assessment of reliability of the investigation approach.
Collapse
Affiliation(s)
- Arturo Nicola Natali
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Alessandro Frigo
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Piero Giovanni Pavan
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Paola Pachera
- Department of Industrial Engineering, University of Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials, University of Padova, Italy.,Department of Biomedical Sciences, University of Padova, Italy
| | - Alessandro Rubini
- Centre for Mechanics of Biological Materials, University of Padova, Italy.,Department of Biomedical Sciences, University of Padova, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Yochai Avital
- Department of Animal Medicine, Production and Health, University of Padova, Italy
| | - Giulia Maria De Benedictis
- Centre for Mechanics of Biological Materials, University of Padova, Italy.,Department of Animal Medicine, Production and Health, University of Padova, Italy
| |
Collapse
|
9
|
Herrera-Imbroda B, Lara MF, Izeta A, Sievert KD, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliv Rev 2015; 82-83:106-16. [PMID: 25453264 DOI: 10.1016/j.addr.2014.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023]
Abstract
Urinary incontinence (UI) is a major health problem causing a significant social and economic impact affecting more than 200million people (women and men) worldwide. Over the past few years researchers have been investigating cell therapy as a promising approach for the treatment of stress urinary incontinence (SUI) since such an approach may improve the function of a weakened sphincter. Currently, a diverse collection of SUI animal models is available. We describe the features of the different models of SUI/urethral dysfunction and the pros and cons of these animal models in regard to cell therapy applications. We also discuss different cell therapy approaches and cell types tested in preclinical animal models. Finally, we propose new research approaches and perspectives to ensure the use of cellular therapy becomes a real treatment option for SUI.
Collapse
|
10
|
Lin G, Alwaal A, Sun F, Zhang H, Li H, Wang L, Wang G, Ning H, Banie L, Lin CS, Lue TF. Estrogen attenuates TGF-β1 induced elastogenesis in rat urethral smooth muscle cells by inhibiting Smad response elements. J Urol 2014; 193:2131-7. [PMID: 25534329 DOI: 10.1016/j.juro.2014.12.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE We investigated the effect and mechanism of estrogen on elastogenesis in urethral smooth muscle cells in vitro. MATERIALS AND METHODS Urethral smooth muscle cells were isolated from normal adult female rats. For elastogenesis assay cells were treated with TGF-β1, the potent TGF-β1 receptor inhibitor SB431542 and estrogen for 2 weeks. Real-time polymerase chain reaction was performed to assay gene expression during this process. Activity of the TGF-β1 responsive elements CAGA(12)-Luc and GCCG(12)-Luc were also assayed. Estrogen receptor and Smad2/3 interaction was evaluated by immunoprecipitation and Western blot. RESULTS TGF-β1 induced elastogenesis in rat urethral smooth muscle cells. This effect was partially blocked by estrogen and completely abrogated by SB431542. SB431542 completely inhibited activation of the Smad2/3 response element CAGA(12)-Luc and estrogen significantly inhibited activation. The Smad1/4 response element GCCG(12)-Luc was not affected by SB431542 treatment but estrogen partially inhibited the activation of GCCG(12)-Luc induced by TGF-β1. Estrogen receptor bound to Smad 2 and 3 in vitro. CONCLUSIONS Estrogen attenuated TGF-β1 induced elastogenesis via binding of its activated receptor to Smad2/3 to inhibit the TGF-β1 response element in rat urethral smooth muscle cells.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Amjad Alwaal
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Fionna Sun
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Haiyang Zhang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Huixi Li
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California; Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, People's Republic of China
| | - Lin Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California; Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, People's Republic of China
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California-San Francisco, San Francisco, California.
| |
Collapse
|
11
|
Chun SY, Kwon JB, Chae SY, Lee JK, Bae JS, Kim BS, Kim HT, Yoo ES, Lim JO, Yoo JJ, Kim WJ, Kim BW, Kwon TG. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int 2014; 114:770-83. [PMID: 24841807 DOI: 10.1111/bju.12815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate whether a triple combination of early-differentiated cells derived from human amniotic fluid stem cells (hAFSCs) would show synergistic effects in urethral sphincter regeneration. MATERIALS AND METHODS We early-differentiated hAFSCs into muscle, neuron and endothelial progenitor cells and then injected them into the urethral sphincter region of pudendal neurectomized ICR mice, as single-cell, double-cell or triple-cell combinations. Urodynamic studies and histological, immunohistochemical and molecular analyses were performed. RESULTS Urodynamic study showed significantly improved leak point pressure in the triple-cell-combination group compared with the single-cell- or double-cell-combination groups. These functional results were confirmed by histological and immunohistochemical analyses, as evidenced by the formation of new striated muscle fibres and neuromuscular junctions at the cell injection site. Molecular analysis showed higher target marker expression in the retrieved urethral tissue of the triple-cell-combination group. The injection of early-differentiated hAFSCs suppressed in vivo host CD8 lymphocyte aggregations and did not form teratoma. The nanoparticle-labelled early-differentiated hAFSCs could be tracked in vivo with optical imaging for up to 14 days after injection. CONCLUSION Our novel concept of triple-combined early-differentiated cell therapy for the damaged sphincter may provide a viable option for incontinence treatment.
Collapse
Affiliation(s)
- So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Al-Noah Z, McKenna D, Langdale C, Thor KB, Marson L, Burgard E, Kullmann FA. Nitrergic relaxations and phenylephrine contractions are not compromised in isolated urethra in a rat model of diabetes. Auton Neurosci 2014; 183:58-65. [PMID: 24656892 DOI: 10.1016/j.autneu.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/07/2014] [Accepted: 03/02/2014] [Indexed: 12/16/2022]
Abstract
In vivo experiments in a diabetic rat model revealed compromised nitrergic urethral relaxations and increased sensitivity to adrenergic agonists. This study evaluated contractile and relaxation properties of urethral smooth muscle after streptozotocin (STZ)-induced diabetes, in vitro, with the aim of determining whether in vivo deficiencies are related to smooth muscle dysfunction. Urethral tissue was collected from adult female Sprague-Dawley rats naive, STZ-treated, vehicle-treated and sucrose-fed at 9-12 week post treatment. Strips from proximal, mid, and distal urethra were placed in tissue baths and stimulated using electric field stimulation (EFS) and pharmacological agents. nNOS staining was evaluated using immunohistochemistry. Phenylephrine (PE, 10μM) contracted all urethral strips with the highest amplitude in mid urethra, in all treatment groups. Likewise, EFS-induced relaxation amplitudes were larger and were observed more frequently in mid urethra. Relaxations were inhibited by the NOS inhibitor, L-NAME (1-100μM). Sodium nitroprusside (0.01-1μM), an NO donor, reversed PE-induced contractions. No statistical differences were observed between treatment groups with respect to any parameters. Qualitative immunohistochemistry showed no differences in the urethral nNOS innervation patterns across the treatment groups. In summary, nitrergic relaxations and adrenergic-induced contractions in the isolated diabetic rat urethra display similar properties to controls, suggesting no dysfunction on the nitrergic or alpha1 adrenergic receptor function in the smooth muscle. This further implies that compromised urethral relaxation and increased adrenergic agonist sensitivity observed in vivo in this model may be due to the disruption of neural signaling between the urethra and the spinal cord, or within the CNS.
Collapse
Affiliation(s)
- Z Al-Noah
- Urogenix, Inc., Durham, NC, United States
| | - D McKenna
- Urogenix, Inc., Durham, NC, United States
| | - C Langdale
- Urogenix, Inc., Durham, NC, United States
| | - K B Thor
- Urogenix, Inc., Durham, NC, United States
| | - L Marson
- Urogenix, Inc., Durham, NC, United States
| | - E Burgard
- Urogenix, Inc., Durham, NC, United States
| | | |
Collapse
|
13
|
Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J 2012; 23:459-66. [PMID: 22072417 PMCID: PMC3306492 DOI: 10.1007/s00192-011-1592-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/17/2011] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Vaginal tactile imaging (VTI) is based on principles similar to those of manual palpation. The objective of this study is to assess the clinical suitability of new approach for imaging and tissue elasticity quantification under normal and prolapse conditions. METHODS The study subjects included 31 women with normal and prolapse conditions. The tissue elasticity (Young's modulus) was calculated from spatial gradients in the resulting 3-D tactile images. RESULTS Average values for tissue elasticity for the anterior and posterior compartments for normal conditions were 7.4 ± 4.3 kPa and 6.2 ± 3.1 kPa respectively. For Stage III prolapse the average values for tissue elasticity for anterior and posterior compartments were 1.8 ± 0.7 kPa and 1.8 ± 0.5 kPa respectively. CONCLUSIONS VTI may serve as a means for 3-D imaging of the vagina and a quantitative assessment of vaginal tissue elasticity, providing important information for furthering our understanding of pelvic organ prolapse and surgical treatment.
Collapse
|
14
|
Yoshimura N, Miyazato M. Neurophysiology and therapeutic receptor targets for stress urinary incontinence. Int J Urol 2012; 19:524-37. [PMID: 22404481 DOI: 10.1111/j.1442-2042.2012.02976.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress urinary incontinence is the most common type of urinary incontinence in women. Stress urinary incontinence involves involuntary leakage of urine in response to abdominal pressure caused by activities, such as sneezing and coughing. The condition affects millions of women worldwide, causing physical discomfort as well as social distress and even social isolation. This type of incontinence is often seen in women after middle age and it can be caused by impaired closure mechanisms of the urethra as a result of a weak pelvic floor or poorly supported urethral sphincter (urethral hypermobility) and/or a damaged urethral sphincter system (intrinsic sphincter deficiency). Until recently, stress urinary incontinence has been approached by clinicians as a purely anatomic problem as a result of urethral hypermobility requiring behavioral or surgical therapy. However, intrinsic sphincter deficiency has been reported to be more significantly associated with stress urinary incontinence than urethral hypermobility. Extensive basic and clinical research has enhanced our understanding of the complex neural circuitry regulating normal function of the lower urinary tract, as well as the pathophysiological mechanisms that might underlie the development of stress urinary incontinence and lead to the development of potential novel strategies for pharmacotherapy of stress urinary incontinence. Therapeutic targets include adrenergic and serotonergic receptors in the spinal cord, and adrenergic receptors at the urethral sphincter, which can enhance urethral reflex activity during stress conditions and increase baseline urethral pressure, respectively. This article therefore reviews the recent advances in stress urinary incontinence research and discusses the neurophysiology of urethral continence reflexes, the etiology of stress urinary incontinence and potential targets for pharmacotherapy of stress urinary incontinence.
Collapse
Affiliation(s)
- Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
15
|
Intrasphincteric autologous myoblast injections with electrical stimulation for stress urinary incontinence. Int J Gynaecol Obstet 2012; 117:164-7. [PMID: 22342057 DOI: 10.1016/j.ijgo.2011.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/26/2011] [Accepted: 01/25/2012] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To assess the feasibility and safety of ultrasound-guided autologous myoblast injections into the external urethral sphincter followed by electrical stimulation (ES) as a possible 2-step treatment for stress urinary incontinence (SUI). METHODS Autologous myoblasts isolated from a biceps muscle sample were injected under transurethral ultrasound guidance into the external urethral sphincter of 38 female patients. The patients also underwent ES postoperatively to enhance cell integration. Treatment feasibility, as well as possible intraoperative and postoperative complications, was assessed 6weeks after the injections. Additionally, the effects of the myoblast injections followed by an ES cycle were compared to those of a preoperative ES cycle undergone by the same patients. RESULTS No serious adverse events or complications were noted and the procedure was well tolerated. Compared with the objective and subjective measurements collected after the preoperative ES cycle, the corresponding measurements obtained 6weeks postoperatively, after the completion of a second ES cycle, indicated considerable improvement. The results to the stress test were negative for 29 (78.4%) of the patients, 5 (13.5%) considered their SUI cured, and 29 (78.4%) reported improvement. CONCLUSION Intrasphincteric autologous myoblast injections followed by ES is minimally invasive and feasible, and safely produced promising initial results. EU Clinical Trials EudraCT No. 2009-012389-30 ClinicalTrials.gov identifier: NCT01355133.
Collapse
|
16
|
Kitta T, Haworth-Ward DJ, Miyazato M, Honda M, de Groat WC, Nonomura K, Vorp DA, Yoshimura N. Effects of Ovariectomy and Estrogen Replacement on the Urethral Continence Reflex During Sneezing in Rats. J Urol 2011; 186:1517-23. [DOI: 10.1016/j.juro.2011.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Indexed: 10/17/2022]
Affiliation(s)
- Takeya Kitta
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Donna J. Haworth-Ward
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Minoru Miyazato
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Masashi Honda
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katsuya Nonomura
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Haworth DJ, Kitta T, Morelli B, Chew DW, Yoshimura N, de Groat WC, Vorp DA. Strain-dependent urethral response. Neurourol Urodyn 2011; 30:1652-8. [PMID: 21826722 DOI: 10.1002/nau.21158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/29/2011] [Indexed: 11/10/2022]
Abstract
AIMS The Sprague-Dawley (SD) rat, an out-bred, all-purpose strain, has served well for lower urinary tract research. However, to test new cellular therapies for conditions such as stress urinary incontinence, an in-bred rat strain with immune tolerance, such as the Lewis rat, may be more useful. The objective of this study was to reveal any differences in lower urinary tract continence mechanisms between the Lewis and SD rat. METHODS The contribution of (1) the striated and smooth muscle to the mechanical and functional properties of the urethra in vitro, and (2) the striated sphincter to leak point pressure (LPP) and reflex continence mechanisms in vivo were assessed in normal (control) Lewis and SD rats and in a model of stress urinary incontinence produced by bilateral pudendal nerve transection. RESULTS Control, Lewis rats had significantly lower LPP, significantly less fast-twitch skeletal muscle and relied less on the striated sphincter for continence than control, SD rats, as indicated by the failure of neuromuscular blockade with alpha-bungarotoxin to reduce LPP. Nerve transection significantly decreased LPP in the SD rat, but not in the Lewis rat. Although the Lewis urethra contained more smooth muscle than the SD rat, it was less active in vitro as indicated by a low urethral baseline pressure and lack of response to phenylephrine. CONCLUSIONS We have observed distinct differences in functional and mechanical properties of the SD and Lewis urethra and have shown that the Lewis rat may not be suitable as a chronic model of SUI via nerve transection.
Collapse
Affiliation(s)
- Donna J Haworth
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Stress urinary incontinence (SUI) is highly prevalent. As of now, there is no minimally invasive long-term treatment available. Adult stem cells are nonimmunogenic and have the ability to self-renew and to differentiate into multiple cell types. Over the past decade, in vivo studies have described periurethral injections of adult-derived stem cells for the treatment of SUI. The ultimate goal has been to achieve a permanent cure for SUI by restoration of the intrinsic and extrinsic urethral sphincter and the surrounding connective tissue, including peripheral nerves and blood vessels. For this purpose, future studies need to focus on delivery systems, cell survival, and functional improvement of the urethral closure mechanism, including improvement of innervation and vascularization.
Collapse
Affiliation(s)
- Andrea Staack
- UCLA School of Medicine, 200 Medical Plaza, Suite 240, Los Angeles, CA 90095 USA
| | - Larissa V. Rodríguez
- UCLA School of Medicine, 200 Medical Plaza, Suite 240, Los Angeles, CA 90095 USA
| |
Collapse
|
19
|
Gill BC, Moore C, Damaser MS. Postpartum stress urinary incontinence: lessons from animal models. EXPERT REVIEW OF OBSTETRICS & GYNECOLOGY 2010; 5:567-580. [PMID: 21113428 PMCID: PMC2989536 DOI: 10.1586/eog.10.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Postpartum stress urinary incontinence (SUI) is associated with chronic SUI in later life, which is 240% more likely to occur in women who deliver vaginally than those who did not. The etiology of SUI is multifactoral and has been associated with defects in both neuromuscular and structural components of continence. Specifically, clinical studies have demonstrated that pudendal nerve damage occurs during vaginal delivery, supporting the concept that neuromuscular damage to the continence mechanism can result in postpartum SUI. Urethral hypermobility and the loss of pelvic floor support, such as that involved in pelvic organ prolapse, have also been associated with SUI. Animal models provide an opportunity to investigate these injuries, individually and in combination, enabling researchers to gain further insight into their relative contributions to the development of SUI and the effectiveness of potential therapies for it. This article discusses the use of animal models of postpartum SUI in addition to the broad insights into treatment efficacy they provide.
Collapse
Affiliation(s)
- Bradley C Gill
- Cleveland Clinic Lerner College of Medicine, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44195, USA
| | - Courtenay Moore
- Glickman Urological and Kidney Institute, Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Ave, Q10, Cleveland, OH 44195, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Glickman Urological and Kidney Institute, Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Abstract
Changes in the elasticity of the vaginal walls, connective support tissues, and muscles are thought to be significant factors in the development of pelvic organ prolapse, a highly prevalent condition affecting at least 50% of women in the United States during their lifetimes. It creates two predominant concerns specific to the biomechanical properties of pelvic support tissues: how does tissue elasticity affect the development of pelvic organ prolapse and how can functional elasticity be maintained through reconstructive surgery. We designed a prototype of vaginal tactile imager (VTI) for visualization and assessment of elastic properties of pelvic floor tissues. In this paper, we analyze applicability of tactile imaging for evaluation of reconstructive surgery results and characterization of normal and pelvic organ prolapse conditions. A pilot clinical study with 13 patients demonstrated that VTI allows imaging of vaginal walls with increased rigidity due to implanted mesh grafts following reconstructive pelvic surgery and VTI has the potential for prolapse characterization and detection.
Collapse
|
21
|
Effects of birth trauma and estrogen on urethral elastic fibers and elastin expression. Urology 2010; 76:1018.e8-13. [PMID: 20472273 DOI: 10.1016/j.urology.2010.02.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To investigate the effects of birth trauma and estrogen on urethral elastic fibers and elastin expression. METHODS Pregnant rats were subjected to sham operation (Delivery-only), DVDO (delivery, vaginal distension and ovariectomy), or DVDO + E₂ (estrogen). At 2, 4, 8, or 12 weeks, their urethras were harvested for elastic fiber staining and reverse transcription-polymerase chain reaction analysis. Urethral cells were treated with transforming growth factor- β1 (TGFβ1) and/or estrogen and analyzed for elastin mRNA expression. Urethral cells were also examined for the activities of Smad1- and Smad3/4-responsive elements in response to TGFβ1 and estrogen. RESULTS At 8 weeks post-treatment, the urethras of DVDO rats had fewer and shorter elastic fibers when compared with Delivery-only rats, and those of DVDO + E₂ rats had fewer and shorter elastic fibers when compared with DVDO rats. Elastin mRNA was expressed at low levels in Delivery-only rats and at increasingly higher levels in DVDO rats at 2, 4, and 8 weeks but at sharply lower levels in DVDO + E₂ rats when compared with DVDO rats at 8 weeks. Urethral cells expressed increasingly higher levels of elastin mRNA in response to increasing concentrations of TGFβ1 up to 1 ng/mL. At this TGFβ1 concentration, urethral cells expressed significantly lower levels of elastin mRNA when treated with estrogen before or after TGFβ1 treatment. Both Smad1- and Smad3/4-responsive elements were activated by TGFβ1 and such activation was suppressed by estrogen. CONCLUSIONS Birth trauma appears to activate urethral elastin expression via TGFβ1 signaling. Estrogen interferes with this signaling, resulting in improper assembly of elastic fibers.
Collapse
|
22
|
Prantil-Baun R, de Groat WC, Miyazato M, Chancellor MB, Yoshimura N, Vorp DA. Ex vivo biomechanical, functional, and immunohistochemical alterations of adrenergic responses in the female urethra in a rat model of birth trauma. Am J Physiol Renal Physiol 2010; 299:F316-24. [PMID: 20444739 DOI: 10.1152/ajprenal.00299.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Birth trauma and pelvic injury have been implicated in the etiology of stress urinary incontinence (SUI). This study aimed to assess changes in the biomechanical properties and adrenergic-evoked contractile responses of the rat urethra after simulated birth trauma induced by vaginal distension (VD). Urethras were isolated 4 days after VD and evaluated in our established ex vivo urethral testing system that utilized a laser micrometer to measure the urethral outer diameter at proximal, middle, and distal positions. Segments were precontracted with phenylephrine (PE) and then exposed to intralumenal static pressures ranging from 0 to 20 mmHg to measure urethral compliance. After active assessment, the urethra was rendered passive with EDTA and assessed. Pressure and diameter measurements were recorded via computer. Urethral thickness was measured histologically to calculate circumferential stress-strain response and functional contraction ratio (FCR), a measure of smooth muscle activity. VD proximal urethras exhibited a significantly increased response to PE compared with that in controls. Conversely, proximal VD urethras had significantly decreased circumferential stress and FCR values in the presence of PE, suggesting that VD reduced the ability of the proximal segment to maintain smooth muscle tone at higher pressures and strains. Circumferential stress values for VD middle urethral segments were significantly higher than control values. Histological analyses using antibodies against general (protein gene product 9.5) and sympathetic (tyrosine hydroxylase) nerve markers showed a significant reduction in nerve density in VD proximal and middle urethral segments. These results strongly suggest that VD damages adrenergic nerves and alters adrenergic responses of proximal and middle urethral smooth muscle. Defects in urethral storage mechanisms, involving changes in adrenergic regulation, may contribute to stress urinary incontinence induced by simulated birth trauma.
Collapse
|
23
|
Abramowitch SD, Feola A, Jallah Z, Moalli PA. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S146-58. [PMID: 19285776 DOI: 10.1016/j.ejogrb.2009.02.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pelvic floor disorders such as pelvic organ prolapse, urinary incontinence, and fecal incontinence affect a large number of women each year. The pelvic floor can be thought of as a biomechanical structure due to the complex interaction between the vagina and its supportive structures that are designed to withstand the downward descent of the pelvic organs in response to increases in abdominal pressure. Although previous work has highlighted the biochemical changes that are associated with specific risk factors (i.e. parity, menopause, and genetics), little work has been done to understand the biomechanical changes that occur within the vagina and its supportive structures to prevent the onset of these pelvic floor disorders. Human studies are often limited due to the challenges of obtaining large tissue samples and ethical concerns. Therefore, it is necessary to investigate the use of animal models and their importance in understanding how different risk factors affect the biomechanical properties of the vagina and its supportive structures. In this review paper, we will discuss the different animal models that have been previously used to characterize the biomechanical properties of the vagina: including non-human primates, rodents, rabbits, and sheep. The anatomy and preliminary biomechanical findings are discussed along with the importance of considering experimental conditions, tissue anisotropy, and viscoelasticity when characterizing the biomechanical properties of vaginal tissue. Although there is not a lot of biomechanics research related to the vagina and pelvic floor, the future is exciting due to the significant potential for scientific findings that will improve our understanding of these conditions and hopefully lead to improvements in the prevention and treatment of pelvic disorders.
Collapse
Affiliation(s)
- Steven D Abramowitch
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|