1
|
Olivera S, Graham D. Sex differences in preclinical models of hypertension. J Hum Hypertens 2023; 37:619-625. [PMID: 36335169 PMCID: PMC10403342 DOI: 10.1038/s41371-022-00770-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Hypertension remains the primary contributor in the development of cardiovascular disease which is rapidly increasing worldwide. High blood pressure affects men and women differently and understanding these sex differences is the ultimate unmet need for researchers in this field. Due to the inherent differences in hypertension prevalence, control and outcomes between men and women, novel research needs to be carried out to tackle these disparities and improve targeted treatment. Animal models of hypertension have provided valuable insights into the sexual dimorphism of blood pressure mechanisms. The availability of genetic and non-genetic hypertensive strains allows the opportunity to study diverse environmental and genetic factors that affect blood pressure, therefore presenting a valuable tool for researchers. Sex differences are present before birth and throughout life, which presents a challenge for the study of disease development in humans, but these complexities can be resolved with the use of in vivo models that display similarities to human disease. The aim of the present review is to provide an overview of the different available animal models of hypertension that present sexual dimorphisms and to discuss their relevance to humans.
Collapse
Affiliation(s)
- Sol Olivera
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
2
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
5
|
Zhang J, Wang X, Cui Y, Jiang S, Wei J, Chan J, Thalakola A, Le T, Xu L, Zhao L, Wang L, Jiang K, Cheng F, Patel T, Buggs J, Vallon V, Liu R. Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension 2021; 78:1760-1770. [PMID: 34657443 DOI: 10.1161/hypertensionaha.121.17643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China (X.W.)
| | - Yu Cui
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jenna Chan
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Anish Thalakola
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Thanh Le
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Lan Xu
- College of Medicine, College of Public Health (L.X.), University of South Florida, Tampa
| | - Liang Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL (K.J.)
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy (F.C.), University of South Florida, Tampa
| | - Trushar Patel
- Department of Urology (T.P.), University of South Florida, Tampa
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, FL (J.B.)
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA (V.V.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| |
Collapse
|
6
|
Wei J, Zhang J, Jiang S, Xu L, Qu L, Pang B, Jiang K, Wang L, Intapad S, Buggs J, Cheng F, Mohapatra S, Juncos LA, Osborn JL, Granger JP, Liu R. Macula Densa NOS1β Modulates Renal Hemodynamics and Blood Pressure during Pregnancy: Role in Gestational Hypertension. J Am Soc Nephrol 2021; 32:2485-2500. [PMID: 34127535 PMCID: PMC8722793 DOI: 10.1681/asn.2020070969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Regulation of renal hemodynamics and BP via tubuloglomerular feedback (TGF) may be an important adaptive mechanism during pregnancy. Because the β-splice variant of nitric oxide synthase 1 (NOS1β) in the macula densa is a primary modulator of TGF, we evaluated its role in normal pregnancy and gestational hypertension in a mouse model. We hypothesized that pregnancy upregulates NOS1β in the macula densa, thus blunting TGF, allowing the GFR to increase and BP to decrease. METHODS We used sophisticated techniques, including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of renal tubules in vivo, clearance kinetics of plasma FITC-sinistrin, and radiotelemetry BP monitoring, to determine the effects of normal pregnancy or reduced uterine perfusion pressure (RUPP) on macula densa NOS1β/NO levels, TGF responsiveness, GFR, and BP in wild-type and macula densa-specific NOS1 knockout (MD-NOS1KO) mice. RESULTS Macula densa NOS1β was upregulated during pregnancy, resulting in blunted TGF, increased GFR, and decreased BP. These pregnancy-induced changes in TGF and GFR were largely diminished, with a significant rise in BP, in MD-NOS1KO mice. In addition, RUPP resulted in a downregulation in macula densa NOS1β, enhanced TGF, decreased GFR, and hypertension. The superimposition of RUPP into MD-NOS1KO mice only caused a modest further alteration in TGF and its associated changes in GFR and BP. Finally, in African green monkeys, renal cortical NOS1β expression increased in normotensive pregnancies, but decreased in spontaneous gestational hypertensive pregnancies. CONCLUSIONS Macula densa NOS1β plays a critical role in the control of renal hemodynamics and BP during pregnancy.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida,Correspondence: Jin Wei, Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard MDC 8, Tampa, Florida 33612.
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Bo Pang
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Suttira Intapad
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Shyam Mohapatra
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | | - Joey P. Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|