1
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Tuettenberg A, Hahn SA, Mazur J, Gerhold-Ay A, Scholma J, Marg I, Ulges A, Satoh K, Bopp T, Joore J, Jonuleit H. Kinome Profiling of Regulatory T Cells: A Closer Look into a Complex Intracellular Network. PLoS One 2016; 11:e0149193. [PMID: 26881744 PMCID: PMC4755507 DOI: 10.1371/journal.pone.0149193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 01/02/2023] Open
Abstract
Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and function of Treg is still limited and based on single kinase cascades so far. To gain a more comprehensive insight into the pathways determining Treg function we performed kinome profiling using a phosphorylation-based kinome array in human Treg at different activation stages compared to Teff. Here we have determined intriguing quantitative differences in both populations. Resting and activated Treg showed an altered pattern of CD28-dependent kinases as well as of those involved in cell cycle progression. Additionally, significant up-regulation of distinct kinases such as EGFR or CK2 in activated Treg but not in Teff not only resemble data we obtained in previous studies in the murine system but also suggest that those specific molecular activation patterns can be used for definition of the activation and functional state of human Treg. Taken together, detailed investigation of kinome profiles opens the possibility to identify novel molecular mechanisms for a better understanding of Treg biology but also for development of effective immunotherapies against unwanted T cell responses in allergy, autoimmunity and cancer.
Collapse
Affiliation(s)
- Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Susanne A. Hahn
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Aslihan Gerhold-Ay
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Jetse Scholma
- Department of Developmental Bioengineering, University of Twente, Enschede, the Netherlands
| | - Iris Marg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Ulges
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Kazuki Satoh
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Jos Joore
- Pepscope BV, Utrecht, The Netherlands
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Divergent immune responses to Mycobacterium avium subsp. paratuberculosis infection correlate with kinome responses at the site of intestinal infection. Infect Immun 2013; 81:2861-72. [PMID: 23716614 DOI: 10.1128/iai.00339-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease (JD) in cattle. M. avium subsp. paratuberculosis infects the gastrointestinal tract of calves, localizing and persisting primarily in the distal ileum. A high percentage of cattle exposed to M. avium subsp. paratuberculosis do not develop JD, but the mechanisms by which they resist infection are not understood. Here, we merge an established in vivo bovine intestinal segment model for M. avium subsp. paratuberculosis infection with bovine-specific peptide kinome arrays as a first step to understanding how infection influences host kinomic responses at the site of infection. Application of peptide arrays to in vivo tissue samples represents a critical and ambitious step in using this technology to understand host-pathogen interactions. Kinome analysis was performed on intestinal samples from 4 ileal segments subdivided into 10 separate compartments (6 M. avium subsp. paratuberculosis-infected compartments and 4 intra-animal controls) using bovine-specific peptide arrays. Kinome data sets clustered into two groups, suggesting unique binary responses to M. avium subsp. paratuberculosis. Similarly, two M. avium subsp. paratuberculosis-specific immune responses, characterized by different antibody, T cell proliferation, and gamma interferon (IFN-γ) responses, were also observed. Interestingly, the kinomic groupings segregated with the immune response groupings. Pathway and gene ontology analyses revealed that differences in innate immune and interleukin signaling and particular differences in the Wnt/β-catenin pathway distinguished the kinomic groupings. Collectively, kinome analysis of tissue samples offers insight into the complex cellular responses induced by M. avium subsp. paratuberculosis in the ileum and provides a novel method to understand mechanisms that alter the balance between cell-mediated and antibody responses to M. avium subsp. paratuberculosis infection.
Collapse
|
5
|
Sikkema AH, den Dunnen WFA, Diks SH, Peppelenbosch MP, de Bont ESJM. Optimizing targeted cancer therapy: towards clinical application of systems biology approaches. Crit Rev Oncol Hematol 2012; 82:171-86. [PMID: 21641230 DOI: 10.1016/j.critrevonc.2011.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022] Open
Abstract
In cancer, genetic and epigenetic alterations ultimately culminate in discordant activation of signal transduction pathways driving the malignant process. Pharmacological or biological inhibition of such pathways holds significant promise with respect to devising rational therapy for cancer. Thus, technical concepts pursuing robust characterization of kinase activity in tissue samples from cancer patients have been subject of investigation. In the present review we provide a comprehensive overview of these techniques and discuss their advantages and disadvantages for systems biology approaches to identify kinase targets in oncological disease. Recent advances in the development and application of array-based peptide-substrate kinase activity screens show great promise in overcoming the discrepancy between the evaluation of aberrant cell signaling in specific malignancies or even individual patients and the currently available ensemble of highly specific targeted treatment strategies. These developments have the potential to result in a more effective selection of kinase inhibitors and thus optimize mechanism-based patient-specific therapeutic strategies. Given the results from current research on the tumor kinome, generating network views on aberrant tumor cell signaling is critical to meet this challenge.
Collapse
Affiliation(s)
- Arend H Sikkema
- Beatrix Children's Hospital, Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Abstract
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.
Collapse
|
7
|
Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med (Berl) 2011; 90:447-56. [PMID: 22095101 PMCID: PMC3307991 DOI: 10.1007/s00109-011-0831-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/22/2011] [Accepted: 10/28/2011] [Indexed: 12/18/2022]
Abstract
Kinase domains are the type of protein domain most commonly found in genes associated with tumorigenesis. Because of this, the human kinome (the protein kinase component of the genome) represents a promising source of cancer biomarkers and potential targets for novel anti-cancer therapies. Alterations in the human colon kinome during the progression from normal colon (NC) through adenoma (AD) to adenocarcinoma (AC) were investigated using integrated transcriptomic and proteomic datasets. Two hundred thirty kinase genes and 42 kinase proteins showed differential expression patterns (fold change ≥ 1.5) in at least one tissue pair-wise comparison (AD vs. NC, AC vs. NC, and/or AC vs. AD). Kinases that exhibited similar trends in expression at both the mRNA and protein levels were further analyzed in individual samples of NC (n = 20), AD (n = 39), and AC (n = 24) by quantitative reverse transcriptase PCR. Individual samples of NC and tumor tissue were distinguishable based on the mRNA levels of a set of 20 kinases. Altered expression of several of these kinases, including chaperone activity of bc1 complex-like (CABC1) kinase, bromodomain adjacent to zinc finger domain protein 1B (BAZ1B) kinase, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D), serine/threonine-protein kinase 24 (STK24), vaccinia-related kinase 3 (VRK3), and TAO kinase 3 (TAOK3), has not been previously reported in tumor tissue. These findings may have diagnostic potential and may lead to the development of novel targeted therapeutic interventions for colorectal cancer.
Collapse
|
8
|
Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int 2011; 80:620-32. [PMID: 21697807 PMCID: PMC3164930 DOI: 10.1038/ki.2011.161] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, 1500 North State Street, Jackson, MS 39216, USA
| | | |
Collapse
|
9
|
Fuhler GM, Diks SH, Peppelenbosch MP, Kerr WG. Widespread deregulation of phosphorylation-based signaling pathways in multiple myeloma cells: opportunities for therapeutic intervention. Mol Med 2011; 17:790-8. [PMID: 21541441 DOI: 10.2119/molmed.2011.00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/26/2011] [Indexed: 01/07/2023] Open
Abstract
Multiple myeloma (MM) is a neoplasm of plasma cell origin that is largely confined to the bone marrow (BM). Chromosomal translocations and other genetic events are known to contribute to deregulation of signaling pathways that lead to transformation of plasma cells and progression to malignancy. However, the tumor stroma may also provide trophic support and enhance resistance to therapy. Phosphorylation of proteins on tyrosine, serine and threonine residues plays a pivotal role in cell growth and survival. Therefore, knowing the status of phosphorylation-based signaling pathways in cells may provide key insights into how cell growth and survival is promoted in tumor cells. To provide a more comprehensive molecular analysis of signaling disruptions in MM, we conducted a kinome profile comparison of normal plasma cells and MM plasma cells as well as their surrounding cells from normal BM and diseased BM. Integrated pathway analysis of the profiles obtained reveals deregulation of multiple signaling pathways in MM cells but also in surrounding bone marrow blood cells compared to their normal counterparts. The deregulated kinase activities identified herein, which include the mTOR (mammalian target of rapamycin)/p70S6K and ERK1/2 (extracellular signal-regulated kinases 1 and 2) pathways, are potential novel molecular targets in this lethal disease.
Collapse
Affiliation(s)
- Gwenny Manel Fuhler
- Department of Gasteroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Taher TE, Parikh K, Flores-Borja F, Mletzko S, Isenberg DA, Peppelenbosch MP, Mageed RA. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:2412-23. [PMID: 20506108 DOI: 10.1002/art.27505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The cause of B lymphocyte hyperactivity and autoantibody production in systemic lupus erythematosus (SLE) remains unclear. Previously, we identified abnormalities in the level and translocation of signaling molecules in B cells in SLE patients. The present study was undertaken to examine the extent of signaling abnormalities that relate to altered B cell responses in SLE. METHODS B lymphocytes from 88 SLE patients and 72 healthy controls were isolated from blood by negative selection. Protein tyrosine phosphorylation and cellular kinase levels were analyzed by Western blotting, flow cytometry, and a kinome array protocol. Changes in protein phosphorylation were determined in ex vivo B cells and following B cell receptor engagement. RESULTS Differences in tyrosine phosphorylation in B cells from patients with SLE, compared with matched controls, were demonstrated. Further, the kinome array analysis identified changes in the activation of key kinases, i.e., the activity of phosphatidylinositol 3-kinase, which regulates survival and differentiation, was up-regulated and the activity of Rac and Rho kinases, which regulate the cytoskeleton and migration, was increased. In contrast, the activity of ATR, which regulates the cell cycle, was down-regulated in SLE patients compared with controls. Differences in signaling pathways were seen in all SLE B lymphocyte subsets that manifested phenotypic features of immature, mature, and memory cells. CONCLUSION This study revealed dysregulation in multiple signaling pathways that control key responses in B cells of SLE patients. Data generated in this study provide a molecular basis for further analysis of the altered B lymphocyte responses in SLE.
Collapse
Affiliation(s)
- Taher E Taher
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Wolf-Yadlin A, Sevecka M, MacBeath G. Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol 2009; 13:398-405. [PMID: 19660979 DOI: 10.1016/j.cbpa.2009.06.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/25/2009] [Indexed: 11/26/2022]
Abstract
Although many methods exist to study the recognition and signaling properties of proteins in isolation, it remains a challenge to perform these investigations on a system-wide or proteome-wide scale and within the context of biological complexity. Protein microarray technology provides a powerful tool to assess the selectivity of protein-protein interactions in high-throughput and to quantify the abundances and post-translational modification states of many different proteins in complex mixtures. Here, we provide an overview of the various applications of protein microarray technology and compare the strengths and technical challenges associated with each approach. Overall, we conclude that if this technology is to have a substantial impact on our understanding of cell biology and physiology, increased emphasis must be placed on obtaining rigorously controlled quantitative data from protein function microarrays and on assessing the selectivity of reagents used in conjunction with protein-detecting microarrays.
Collapse
Affiliation(s)
- Alejandro Wolf-Yadlin
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
12
|
Helle F, Jouzel C, Chadjichristos C, Placier S, Flamant M, Guerrot D, François H, Dussaule JC, Chatziantoniou C. Improvement of renal hemodynamics during hypertension-induced chronic renal disease: role of EGF receptor antagonism. Am J Physiol Renal Physiol 2009; 297:F191-9. [DOI: 10.1152/ajprenal.00015.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The present study investigated mechanisms of regression of renal disease after severe proteinuria by focusing on the interaction among EGF receptors, renal hemodynamics, and structural lesions. The nitric oxide (NO) inhibitor NG-nitro-l-arginine-methyl ester (l-NAME) was administered chronically in Sprague-Dawley rats. When proteinuria exceeded 2 g/mmol creatinine, animals were divided into three groups for an experimental period of therapy of 2 wk; in one group, l-NAME was removed to allow reactivation of endogenous NO synthesis; in the two other groups, l-NAME removal was combined with EGF or angiotensin receptor type 1 (AT1) antagonism. l-NAME removal partially reduced mean arterial pressure and proteinuria and increased renal blood flow (RBF), but not microvascular hypertrophy. Progression of structural damage was stopped, but not reversed. The administration of an EGF receptor antagonist did not have an additional effect on lowering blood pressure or on renal inflammation but did normalize RBF and afferent arteriole hypertrophy; the administration of an AT1 antagonist normalized all measured functional and structural parameters. Staining with a specific marker of endothelial integrity indicated loss of functional endothelial cells in the l-NAME removal group; in contrast, in the animals treated with an EGF or AT1 receptor antagonist, functional endothelial cells reappeared at levels equal to control animals. In addition, afferent arterioles freshly isolated from the l-NAME removal group showed an exaggerated constrictor response to endothelin; this response was blunted in the vessels isolated from the EGF or AT1 receptor antagonist groups. The EGF receptor is an important mediator of endothelial dysfunction and contributes to the decline of RBF in the chronic kidney disease induced by NO deficiency. The EGF receptor antagonist-induced improvement of RBF is important but not sufficient for a complete reversal of renal disease, because it has little effect on renal inflammation. To achieve full recovery, it is necessary to apply AT1 receptor antagonism.
Collapse
|
13
|
Jalal S, Arsenault R, Potter AA, Babiuk LA, Griebel PJ, Napper S. Genome to kinome: species-specific peptide arrays for kinome analysis. Sci Signal 2009; 2:pl1. [PMID: 19155530 DOI: 10.1126/scisignal.254pl1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tools for conducting high-throughput kinome analysis do not exist for many species. For example, two commonly used techniques for monitoring phosphorylation events are phosphorylation-specific antibodies and peptide arrays. The majority of phosphorylation-specific antibodies are for human or mouse targets, and the construction of peptide arrays relies on information from phosphorylation databases, which are similarly biased toward human and mouse data. This is a substantial obstacle because many species other than mouse represent important biological models. On the basis of the observation that phosphorylation events are often conserved across species with respect to their relative positioning within proteins and their biological function, we demonstrate that it is possible to predict the sequence contexts of phosphorylation events in other species for the production of peptide arrays for kinome analysis. Through this approach, genomic information can be rapidly used to create inexpensive, customizable, species-specific peptide arrays for high-throughput kinome analysis. We anticipate that these arrays will be valuable for investigating the conservation of biological responses across species, validating animal models of disease, and translating research to clinical applications.
Collapse
Affiliation(s)
- Shakiba Jalal
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Parikh K, Peppelenbosch MP, Ritsema T. Kinome profiling using peptide arrays in eukaryotic cells. Methods Mol Biol 2009; 527:269-80, x. [PMID: 19241020 DOI: 10.1007/978-1-60327-834-8_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last 10 years array and mass spectrometry technologies have enabled the determination of the transcriptome and proteome of biological and in particular eukaryotic systems. This information will likely be of significant value to our elucidation of the molecular mechanisms that govern eukaryotic physiology. However, an equally, if not more important goal, is to define those proteins that participate in signalling pathways that ultimately control cell fate. Enzymes that phosphorylate tyrosine, serine, and threonine residues on other proteins play a major role in signalling cascades that determine cell-cycle entry, and survival and differentiation fate in the tissues across the eukaryotic kingdoms. Knowing which signalling pathways are being used in these cells is of critical importance. Traditional genetic and biochemical approaches can certainly provide answers here, but for technical and practical reasons there is typically pursued one gene or pathway at a time. Thus, a more comprehensive approach is needed in order to reveal signalling pathways active in nucleated cells. Towards this end, kinome analysis techniques using peptide arrays have begun to be applied with substantial success in a variety of organisms from all major branches of eukaryotic life, generating descriptions of cellular signalling without a priori assumptions as to possibly effected pathways. The general procedure and analysis methods are very similar disregarding whether the primary source of the material is animal, plant, or fungal of nature and will be described in this chapter. These studies will help us better understand what signalling pathways are critical to controlling eukaryotic cell function.
Collapse
Affiliation(s)
- Kaushal Parikh
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
15
|
Abstract
Enzymes are key molecules in signal transduction pathways. However, only a small fraction of more than 500 predicted human kinases, 250 proteases and 250 phosphatases is characterized so far. Peptide microarray-based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. Additionally, patterns of enzymatic activities could be used to fingerprint the status of cells or organisms. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimization of enzyme substrates. A comprehensive overview regarding enzyme profiling using peptide microarrays is presented with special focus on assay principles.
Collapse
Affiliation(s)
- Alexandra Thiele
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | | |
Collapse
|
16
|
Extracellular ligation-dependent CD45RB enzymatic activity negatively regulates lipid raft signal transduction. Blood 2008; 113:594-603. [PMID: 18840711 DOI: 10.1182/blood-2008-04-150987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD45 is the most prominent membrane protein on lymphocytes. The function and regulation of this protein tyrosine phosphatase remain largely obscure, mainly because of the lack of a known ligand, and it still remains unknown whether such tyrosine phosphatases are subject to extracellular control at all. We report that an anti-CD45RB antibody (Ab) that prevents rejection and induces tolerance activates CD45RB tyrosine phosphatase enzymatic activity in T lymphocytes, allowing us to directly monitor the effects of increased CD45RB activity on signal transduction. Using both kinase substrate peptide arrays as well as conventional biochemistry, we also provide evidence of the various kinases involved in bringing about the inhibitory effect of this Ab on CD3-induced T-cell receptor signaling. Furthermore, we report that activated CD45RB translocates to lipid rafts and interferes with lipid raft localization and activation state of CD45 substrate Lck. Thus, these findings indeed prove that CD45 is subject to extracellular control and also define a novel mechanism by which receptor tyrosine phosphatases control lymphocyte biology and provide further insight into the intracellular signaling pathways effected by anti-CD45RB monoclonal Ab treatment.
Collapse
|
17
|
Primer: strategies for identifying genes involved in renal disease. ACTA ACUST UNITED AC 2008; 4:265-76. [PMID: 18364721 DOI: 10.1038/ncpneph0785] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/31/2008] [Indexed: 12/22/2022]
Abstract
The globally increasing number of patients with end-stage renal disease urges the identification of molecular pathways involved in renal pathophysiology, to serve as targets for intervention. Moreover, the identification of genetic risk factors or protective genes can aid tailored therapy. Tools that can be used to identify genes involved in renal disease include gene expression arrays, linkage analysis and association studies. Arrays are a powerful and widely used approach to the analysis of gene transcription and protein expression, whereas linkage analysis and association studies link disease susceptibility to particular genetic regions. Animal models are available to pinpoint the disease-associated genes. Candidate genes so far identified in renal disease include those encoding the podocyte proteins nephrin and podocin, the transcription factor WT1, the calcium channel TRPC6 and the enzyme phospholipase C-epsilon-1 (in congenital nephrotic syndrome and focal segmental glomerulosclerosis), and carnosinase (in diabetic nephropathy). In addition, linkage studies have identified chromosomal regions implicated in systemic lupus erythematosus, diabetic nephropathy and familial IgA nephropathy. Future studies will elucidate the emerging role of epigenetic regulation of gene expression in renal disease.
Collapse
|