1
|
Miles HN, Tomlin D, Ricke WA, Li L. Integrating intracellular and extracellular proteomic profiling for in-depth investigations of cellular communication in a model of prostate cancer. Proteomics 2023; 23:e2200287. [PMID: 37226375 PMCID: PMC10667563 DOI: 10.1002/pmic.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cellular communication is essential for cell-cell interactions, maintaining homeostasis and progression of certain disease states. While many studies examine extracellular proteins, the holistic extracellular proteome is often left uncaptured, leaving gaps in our understanding of how all extracellular proteins may impact communication and interaction. We used a cellular-based proteomics approach to more holistically profile both the intracellular and extracellular proteome of prostate cancer. Our workflow was generated in such a manner that multiple experimental conditions can be observed with the opportunity for high throughput integration. Additionally, this workflow is not limited to a proteomic aspect, as metabolomic and lipidomic studies can be integrated for a multi-omics workflow. Our analysis showed coverage of over 8000 proteins while also garnering insights into cellular communication in the context of prostate cancer development and progression. Identified proteins covered a variety of cellular processes and pathways, allowing for the investigation of multiple aspects into cellular biology. This workflow demonstrates advantages for integrating intra- and extracellular proteomic analyses as well as potential for multi-omics researchers. This approach possesses great value for future investigations into the systems biology aspects of disease development and progression.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Devin Tomlin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Frankenfield A, Ni J, Hao L. Characterization of Neuronal Lysosome Interactome with Proximity Labeling Proteomics. J Vis Exp 2022:10.3791/64132. [PMID: 35815987 PMCID: PMC9997703 DOI: 10.3791/64132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lysosomes frequently communicate with a variety of biomolecules to achieve the degradation and other diverse cellular functions. Lysosomes are critical to human brain function, as neurons are postmitotic and rely heavily on the autophagy-lysosome pathway to maintain cellular homeostasis. Despite advancements in the understanding of various lysosomal functions, capturing the highly dynamic communications between lysosomes and other cellular components is technically challenging, particularly in a high-throughput fashion. Here, a detailed protocol is provided for the recently published endogenous (knock-in) lysosome proximity labeling proteomic method in human induced pluripotent stem cell (hiPSC)-derived neurons. Both lysosomal membrane proteins and proteins surrounding lysosomes within a 10-20 nm radius can be confidently identified and accurately quantified in live human neurons. Each step of the protocol is described in detail, i.e., hiPSC-neuron culture, proximity labeling, neuron harvest, fluorescence microscopy, biotinylated protein enrichment, protein digestion, LC-MS analysis, and data analysis. In summary, this unique endogenous lysosomal proximity labeling proteomics method provides a high-throughput and robust analytical tool to study the highly dynamic lysosomal activities in live human neurons.
Collapse
Affiliation(s)
| | - Jiawei Ni
- Department of Chemistry, The George Washington University
| | - Ling Hao
- Department of Chemistry, The George Washington University;
| |
Collapse
|
3
|
Li H, Uittenbogaard M, Navarro R, Ahmed M, Gropman A, Chiaramello A, Hao L. Integrated proteomic and metabolomic analyses of the mitochondrial neurodegenerative disease MELAS. Mol Omics 2022; 18:196-205. [PMID: 34982085 PMCID: PMC11334596 DOI: 10.1039/d1mo00416f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic mechanism of MELAS remains enigmatic due to the exceptional clinical heterogeneity and the obscure genotype-phenotype correlation among MELAS patients. To gain insights into the pathogenic signature of MELAS, we designed a comprehensive strategy integrating proteomics and metabolomics in patient-derived dermal fibroblasts harboring the ultra-rare MELAS pathogenic variant m.14453G>A, specifically affecting the mitochondrial respiratory complex I. Global proteomics was achieved by data-dependent acquisition (DDA) and verified by data-independent acquisition (DIA) using both Spectronaut and the recently launched MaxDIA platforms. Comprehensive metabolite coverage was achieved for both polar and nonpolar metabolites in both reverse phase and HILIC LC-MS/MS analyses. Our proof-of-principle MELAS study with multi-omics integration revealed OXPHOS dysregulation with a predominant deficiency of complex I subunits, as well as alterations in key bioenergetic pathways, glycolysis, tricarboxylic acid cycle, and fatty acid β-oxidation. The most clinically relevant discovery is the downregulation of the arginine biosynthesis pathway, likely due to blocked argininosuccinate synthase, which is congruent with the MELAS cardinal symptom of stroke-like episodes and its current treatment by arginine infusion. In conclusion, we demonstrated an integrated proteomic and metabolomic strategy for patient-derived fibroblasts, which has great clinical potential to discover therapeutic targets and design personalized interventions after validation with a larger patient cohort in the future.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Ryan Navarro
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Mustafa Ahmed
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Medical Center, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Ling Hao
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| |
Collapse
|
4
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
5
|
Multiplexed quantitative neuropeptidomics via DiLeu isobaric tagging. Methods Enzymol 2022; 663:235-257. [DOI: 10.1016/bs.mie.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wei J, Gao Y. Early disease biomarkers can be found using animal models urine proteomics. Expert Rev Proteomics 2021; 18:363-378. [PMID: 34058951 DOI: 10.1080/14789450.2021.1937133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Early disease detection is a prerequisite for early intervention. Urine is not subjected to homeostatic control, and therefore, it accumulates very early changes associated with disease processes, some of which may be used as biomarkers. Animal models must be used to identify urinary changes associated with very early stages of diseases to avoid potential interfering factors and obtain urine samples at a sufficiently early time point before pathological or clinical manifestations occur. AREAS COVERED We reviewed recent (from 2009-2020) urine proteome studies using animal models of many diseases. We focused on early changes in urine proteome of animal models, particularly changes occurring prior to alterations in blood tests, light microscopy observations and clinical manifestations. Additional studies relevant to the topic were also extracted from the references of the cited papers. Changes in the urine proteome at different disease stages and the ability of the urine proteome to differentiate among different animal models are also discussed in this review. EXPERT COMMENTARY Urine proteomes of animal models may reflect early changes that occur even before changes in blood parameters, light microscopy observations and clinical manifestations, suggesting the potential use of urinary biomarkers for the very early detection of human diseases.
Collapse
Affiliation(s)
- Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
7
|
Pascal LE, Mizoguchi S, Chen W, Rigatti LH, Igarashi T, Dhir R, Tyagi P, Wu Z, Yang Z, de Groat WC, DeFranco DB, Yoshimura N, Wang Z. Prostate-Specific Deletion of Cdh1 Induces Murine Prostatic Inflammation and Bladder Overactivity. Endocrinology 2021; 162:5992231. [PMID: 33211830 PMCID: PMC7745638 DOI: 10.1210/endocr/bqaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenyu Yang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| |
Collapse
|
8
|
Thomas S, Hao L, DeLaney K, McLean D, Steinke L, Marker PC, Vezina CM, Li L, Ricke WA. Spatiotemporal Proteomics Reveals the Molecular Consequences of Hormone Treatment in a Mouse Model of Lower Urinary Tract Dysfunction. J Proteome Res 2020; 19:1375-1382. [PMID: 32108482 DOI: 10.1021/acs.jproteome.9b00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benign prostatic hyperplasia and related lower urinary tract symptoms remain common, costly, and impactful issues for aging males. The etiology and pathogenesis are multifactorial and include steroid hormone changes and inflammation. Noninvasive markers could one day inform personalized medicine, but interindividual variation and lack of healthy age-matched controls hamper research. Experimental models are appealing for insight into disease mechanisms. Here, we present a spatiotemporal proteomics study in a mouse model of hormone-induced urinary dysfunction. Urine samples were collected noninvasively across time: before, during, and after disease onset. A microcomputed tomography analysis implicated the prostate as a spatially relevant contributor to bladder outlet obstruction. Prostates were collected after disease onset and compared with control mice. Notable changes in urine include proteins representing oxidative stress defense and acute phase inflammatory response processes. In the prostate, hormone treatment led to perturbations related to an oxidative stress response and H2O2 metabolism. Several protein changes coincided in both urine and the prostate tissue, including glutathione peroxidase 3, glutathione hydrolase 1 proenzyme, and vitamin D-binding protein. This study supports the concept of noninvasive urinary biomarkers for prostate disease diagnostics. Oxidative stress and acute phase inflammatory processes were identified as key consequences of hormone-induced bladder outlet obstruction. Future research into antioxidants and anti-inflammatories in prostate diseases appears promising.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dalton McLean
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Laura Steinke
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Paul C Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Wei P, Hao L, Ma F, Yu Q, Buchberger AR, Lee S, Bushman W, Li L. Urinary Metabolomic and Proteomic Analyses in a Mouse Model of Prostatic Inflammation. URINE (AMSTERDAM, NETHERLANDS) 2019; 1:17-23. [PMID: 33870183 PMCID: PMC8052098 DOI: 10.1016/j.urine.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lower urinary tract symptoms (LUTS) are common among aging men. Since prostatic inflammation is one of its etiologies, it is plausible that urinary metabolite and protein biomarkers could be identified and used to diagnose inflammation-induced LUTS. We characterized the urine metabolome and proteome in a mouse model of bacterial-induced prostatic inflammation. Mass Spectrometry (MS)-based multi-omics analysis was employed to discover urinary protein and metabolite-based biomarkers. The investigation of isobaric dimethylated leucine (DiLeu) labeling on metabolites allowed metabolomics and proteomics analysis on the same liquid chromatography (LC)-MS platform. In total, 143 amine-containing metabolites and 1058 urinary proteins were identified and quantified (data are available via ProteomeXchange with identifier PXD018023); among them, 14 metabolites and 168 proteins were significantly changed by prostatic inflammation. Five metabolic pathways and four inflammation-related biological processes were potentially disrupted. By comparing our findings with urinary biomarkers identified in a mouse model of genetic-induced prostate inflammation and with those previously found to be associated with LUTS in older men, we identified creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig receptor as conserved biomarkers for prostatic inflammation associated with LUTS. These data suggest that these putative biomarkers could be used to identify men in which prostate inflammation is present and contributing to LUTS.
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ling Hao
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Sanghee Lee
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wade Bushman
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|