1
|
Braga Tibaes JR, Barreto Silva MI, Wollin B, Vine D, Tsai S, Richard C. Sex differences in systemic inflammation and immune function in diet-induced obesity rodent models: A systematic review. Obes Rev 2024; 25:e13665. [PMID: 38072656 DOI: 10.1111/obr.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 02/28/2024]
Abstract
Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.
Collapse
Affiliation(s)
| | - Maria Ines Barreto Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Reverte V, Rodriguez F, Oltra L, Moreno JM, Llinas MT, Shea CM, Schwartzkopf CD, Buys ES, Masferrer JL, Salazar FJ. SGLT2 inhibition potentiates the cardiovascular, renal and metabolic effects of sGC stimulation in hypertensive rats with prolonged exposure to high fat diet. Am J Physiol Heart Circ Physiol 2022; 322:H523-H536. [PMID: 35119333 PMCID: PMC8917931 DOI: 10.1152/ajpheart.00386.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged high-fat diet (HFD) accelerates the cardiovascular, renal, and metabolic dysfunction in hypertensive rats with altered renal development (ARDev). Soluble guanylate cyclase (sGC) stimulation or sodium-glucose cotransporter 2 (SGLT2) inhibition may improve cardiovascular, renal, and metabolic function in settings of hypertension and obesity. This study examined whether 6 wk treatment with an SGLT2 inhibitor (empagliflozin, 7 mg/kg/day) enhances the cardiovascular, renal, and metabolic effects of a sGC stimulator (praliciguat, 10 mg/kg/day) in hypertensive rats with ARDev and prolonged exposure to HFD. Arterial pressure (AP), renal vascular resistance (RVR), fat abdominal volume (FAV), insulin resistance, leptin and triglycerides levels, and intrarenal infiltration of inflammatory cells were higher, but cardiac output and creatinine clearance were lower in hypertensive rats (n = 15) than in normotensive rats (n = 7). Praliciguat administration (n = 10) to hypertensive rats reduced (P < 0.05) AP, FAV, plasma concentrations of leptin and triglycerides, and increased (P < 0.05) cardiac output and creatinine clearance. Empagliflozin administration (n = 8) only increased (P < 0.05) glucosuria and creatinine clearance and decreased (P < 0.05) plasma leptin and triglycerides concentrations in hypertensive rats. Simultaneous administration of praliciguat and empagliflozin (n = 10) accelerated the decrease in AP, improved glucose tolerance, reduced (P < 0.05) incremental body weight gain, and decreased (P < 0.05) insulin resistance index, RVR, and the infiltration of T-CD3 lymphocytes in renal cortex and renal medulla. In summary, the combined administration of praliciguat and empagliflozin leads to a greater improvement of the cardiovascular, renal, and metabolic dysfunction secondary to prolonged exposure to HFD in hypertensive rats with ARDev than the treatment with either praliciguat or empagliflozin alone. NEW & NOTEWORTHY This is the first study, to our knowledge, showing that SGLT2 inhibition potentiates the beneficial cardiovascular, renal, and metabolic effects elicited by sGC stimulation in hypertensive rats with prolonged high-fat diet. The effects of the simultaneous administration of praliciguat and empagliflozin are greater than those elicited by either one alone. The effects of the simultaneous treatment may be related to a greater reduction in the inflammatory status.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Francisca Rodriguez
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Lidia Oltra
- Biomedical Research Institute, Murcia, Spain
| | - Juan M Moreno
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Maria T Llinas
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Courtney M Shea
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - Emmanuel S Buys
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - F Javier Salazar
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| |
Collapse
|
3
|
Moreno JM, Martinez CM, de Jodar C, Reverte V, Bernabé A, Salazar FJ, Llinás MT. Gender differences in the renal changes induced by a prolonged high-fat diet in rats with altered renal development. J Physiol Biochem 2021; 77:431-441. [PMID: 33851366 DOI: 10.1007/s13105-021-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms involved in renal dysfunction induced by high-fat diet (HFD) in subjects with altered renal development (ARDev) are understudied. The objective of this study is to examine whether there are sex-dependent differences in the mechanisms involved in the hypertension and deterioration of renal function in SD rats with prolonged HFD and ARDev. The role of angiotensin II (Ang II) in the arterial pressure (AP) increments, the renal hemodynamic sensitivity to Ang II, glomerular damage and changes in fat abdominal volume, plasma adipokine levels, renal NADPHp67phox expression, and renal infiltration of immune cells were examined. Hypertension and deterioration of renal function were enhanced (P < 0.05) in both sexes of rats with HFD and ARDev. The decrease (P < 0.05) of AP elicited by candesartan in hypertensive rats was similar to that induced by the simultaneous administration of candesartan and apocynin. The greater (P < 0.05) renal vasoconstriction induced by Ang II in both sexes of rats with HFD and ARDev was accompanied by an enhanced (P < 0.05) infiltration of CD-3 cells and macrophages in the renal cortex and renal medulla. The increments (P < 0.05) in the renal expression of NADPHp67phox and glomeruloesclerosis were greater (P < 0.05) in males than in females with HFD and ARDev. Our results suggest that the hypertension and deterioration of renal function induced by HFD in rats with ARDev are Ang II-dependent and mediated by increments in oxidative stress and immune system activation. Sex-dependent increments in oxidative stress and glomerular damage may contribute to the deterioration of renal function in these rats.
Collapse
Affiliation(s)
- Juan M Moreno
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | | | - Carlos de Jodar
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - Virginia Reverte
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | - Antonio Bernabé
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - F Javier Salazar
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Institute in Murcia, Murcia, Spain.
| | - María T Llinás
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| |
Collapse
|
4
|
Serrano A, González-Sarrías A, Tomás-Barberán FA, Avellaneda A, Gironés-Vilaplana A, Nieto G, Ros-Berruezo G. Anti-Inflammatory and Antioxidant Effects of Regular Consumption of Cooked Ham Enriched with Dietary Phenolics in Diet-Induced Obese Mice. Antioxidants (Basel) 2020; 9:E639. [PMID: 32708089 PMCID: PMC7402095 DOI: 10.3390/antiox9070639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative damage and chronic inflammation have been proven as one of the major factors associated with obesity, which increases the incidence of non-communicable chronic diseases. In this sense, the development of new functional products aiming at the palliation of oxidative stress and inflammatory disruption can be a determining factor for public health as seen in previous researches. In this study, a blend of potentially bioavailable dietary phenolics was added to low sodium and low-fat cooked ham. A diet-induced obesity model in C57/BL6J mice has been used for testing the effectiveness of the phenolic blend and the new functionalized product, which bioavailability was tested by UPLC-ESI-QTOF-MS. After obesity induction, different oxidative and inflammatory biomarkers were evaluated. Results in the murine induced obesity model, demonstrate a robust statistically significant improvement in key parameters related with obesity risk in the groups feed with a phenolic-enriched diets (P) + high-fat diet (HFD) and phenolic enriched cooked ham (PECH) + HFD. In both groups there was an improvement in body composition parameters, inflammatory biomarkers and antioxidant enzymes levels. Specifically in the group feed with the phenolic enriched cooked ham (PECH + HFD) there was an improvement of total fat volume (23.08% reduction), spleen index (22.04% of reduction), plasmatic MCP-1 (18% reduction), IL-6 (38.94% reduction), IL-10 (13.28% reduction), TNF-α (21.32% reduction), gut IL-1β (10.86% reduction), gut IL-6 (13.63% reduction) and GPx (60.15% increase) and catalase (91.37% increase) enzymes. Thus, the functionalized ham could be considered an appropriate dietary polyphenol source, which might improve the oxidative and inflammatory status and could finally result in the potential decrease of the risk of certain non-communicable chronic diseases.
Collapse
Affiliation(s)
- Antonio Serrano
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio Avellaneda
- R&D Department, ElPozo Alimentación S.A., Alhama de Murcia, 30840 Murcia, Spain
| | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| | - Gaspar Ros-Berruezo
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes-Universidad de Murcia, 30003 Murcia, Spain
| |
Collapse
|
5
|
Cardiac, renal and uterine hemodynamics changes throughout pregnancy in rats with a prolonged high fat diet from an early age. PLoS One 2020; 15:e0234861. [PMID: 32603330 PMCID: PMC7326224 DOI: 10.1371/journal.pone.0234861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Objective To examine whether the cardiac, renal and uterine physiological hemodynamic changes during gestation are altered in rats with an early and prolonged exposure to a high fat diet (HFD). Methods Arterial pressure and cardiac, renal, uterine and radial arteries hemodynamic changes during gestation were examined in adult SD rats exposed to normal (13%) (n = 8) or high (60%) (n = 8) fat diets from weaning. Plethysmography, high-resolution high-frequency ultrasonography and clearance of an inulin analog were used to evaluate the arterial pressure and hemodynamic changes before and at days 7, 14 and 19 of gestation. Results Arterial pressure was higher (P<0.05) in rats with high than in those with normal (NFD) fat diet before pregnancy (123 ±3 and 110 ±3 mmHg, respectively) and only decreased at day 14 of gestation in rats with NFD (98±4 mmHg, P<0.05). A significant increment in stroke volume (42 ±10%) and cardiac output (51 ±12%) was found at day 19 of pregnancy in rats with NFD. The changes in stroke volume and cardiac output were similar in rats with NFD and HFD. When compared to the values obtained before pregnancy, a transitory elevation in renal blood flow was found at day 14 of pregnancy in both groups. However, glomerular filtration rate only increased (P<0.05) in rats with NFD at days 14 (20 ±7%) and 19 (27 ±8%) of gestation. The significant elevations of mean velocity, and velocity time integral throughout gestation in radial (127 ±26% and 111 ±23%, respectively) and uterine (91 ±16% and 111 ±25%, respectively) arteries of rats with NFD were not found in rats with an early and prolonged HFD. Summary This study reports novel findings showing that the early and prolonged exposure to a HFD leads to a significant impairment in the renal, uterine and radial arteries hemodynamic changes associated to gestation.
Collapse
|