1
|
Moser S, Sugano Y, Wengi A, Fisi V, Lindtoft Rosenbaek L, Mariniello M, Loffing‐Cueni D, McCormick JA, Fenton RA, Loffing J. A five amino acids deletion in NKCC2 of C57BL/6 mice affects analysis of NKCC2 phosphorylation but does not impact kidney function. Acta Physiol (Oxf) 2021; 233:e13705. [PMID: 34114742 PMCID: PMC8384713 DOI: 10.1111/apha.13705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Aim The phosphorylation level of the furosemide‐sensitive Na+‐K+‐2Cl− cotransporter (NKCC2) in the thick ascending limb (TAL) is used as a surrogate marker for NKCC2 activation and TAL function. However, in mice, analyses of NKCC2 phosphorylation with antibodies against phosphorylated threonines 96 and 101 (anti‐pT96/pT101) give inconsistent results. We aimed (a) to elucidate these inconsistencies and (b) to develop a phosphoform‐specific antibody that ensures reliable detection of NKCC2 phosphorylation in mice. Methods Genetic information, molecular biology, biochemical techniques and mouse phenotyping was used to study NKCC2 and kidney function in two commonly used mouse strains (ie 129Sv and in C57BL/6 mice). Moreover, a new phosphoform‐specific mouse NKCC2 antibody was developed and characterized. Results Amino acids sequence alignment revealed that C57BL/6 mice have a strain‐specific five amino acids deletion (ΔF97‐T101) in NKCC2 that diminishes the detection of NKCC2 phosphorylation with previously developed pT96/pT101 NKCC2 antibodies. Instead, the antibodies cross‐react with the phosphorylated thiazide‐sensitive NaCl cotransporter (NCC), which can obscure interpretation of results. Interestingly, the deletion in NKCC2 does not impact on kidney function and/or expression of renal ion transport proteins as indicated by the analysis of the F2 generation of crossbred 129Sv and C57BL/6 mice. A newly developed pT96 NKCC2 antibody detects pNKCC2 in both mouse strains and shows no cross‐reactivity with phosphorylated NCC. Conclusion Our work reveals a hitherto unappreciated, but essential, strain difference in the amino acids sequence of mouse NKCC2 that needs to be considered when analysing NKCC2 phosphorylation in mice. The new pNKCC2 antibody circumvents this technical caveat.
Collapse
Affiliation(s)
- Sandra Moser
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Yuya Sugano
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Agnieszka Wengi
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Viktoria Fisi
- Institute of Anatomy University of Zurich Zurich Switzerland
| | | | | | | | - James A. McCormick
- Division of Nephrology and Hypertension Oregon Health & Science University Portland OR USA
| | | | - Johannes Loffing
- Institute of Anatomy University of Zurich Zurich Switzerland
- Swiss National Centre for Competence in Research “Kidney control of homeostasis” Zurich Switzerland
| |
Collapse
|
2
|
Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21217994. [PMID: 33121167 PMCID: PMC7663488 DOI: 10.3390/ijms21217994] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 9.1% of the global population and is a significant public health problem associated with increased morbidity and mortality. CKD is associated with highly prevalent physiological and metabolic disturbances such as hypertension, obesity, insulin resistance, cardiovascular disease, and aging, which are also risk factors for CKD pathogenesis and progression. Podocytes and proximal tubular cells of the kidney strongly express AMP-activated protein kinase (AMPK). AMPK plays essential roles in glucose and lipid metabolism, cell survival, growth, and inflammation. Thus, metabolic disease-induced renal diseases like obesity-related and diabetic chronic kidney disease demonstrate dysregulated AMPK in the kidney. Activating AMPK ameliorates the pathological and phenotypical features of both diseases. As a metabolic sensor, AMPK regulates active tubular transport and helps renal cells to survive low energy states. AMPK also exerts a key role in mitochondrial homeostasis and is known to regulate autophagy in mammalian cells. While the nutrient-sensing role of AMPK is critical in determining the fate of renal cells, the role of AMPK in kidney autophagy and mitochondrial quality control leading to pathology in metabolic disease-related CKD is not very clear and needs further investigation. This review highlights the crucial role of AMPK in renal cell dysfunction associated with metabolic diseases and aims to expand therapeutic strategies by understanding the molecular and cellular processes underlying CKD.
Collapse
|
3
|
Zhu J, Xu M, Liu Y, Zhuang L, Ying K, Liu F, Liu D, Ma W, Songyang Z. Phosphorylation of PLIN3 by AMPK promotes dispersion of lipid droplets during starvation. Protein Cell 2020; 10:382-387. [PMID: 30430421 PMCID: PMC6468040 DOI: 10.1007/s13238-018-0593-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jianxi Zhu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, 510530, China
| | - Mingyang Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lisha Zhuang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kejun Ying
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, 510530, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, 510530, China. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
5
|
Hu CC, Katerelos M, Choy SW, Crossthwaite A, Walker SP, Pell G, Lee M, Cook N, Mount PF, Paizis K, Power DA. Pre-eclampsia is associated with altered expression of the renal sodium transporters NKCC2, NCC and ENaC in urinary extracellular vesicles. PLoS One 2018; 13:e0204514. [PMID: 30248150 PMCID: PMC6152984 DOI: 10.1371/journal.pone.0204514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Pre-eclampsia is a hypertensive disorder of pregnancy characterised by hypertension and sodium retention by the kidneys. To identify changes in sodium uptake proteins in the tubules of the distal nephron, we studied their expression in urinary extracellular vesicles or exosomes (uEVs). Urine was collected from women with pre-eclampsia or during normal pregnancy, and from healthy non-pregnant controls. uEVs were isolated by centrifugation and analyzed by Western blot. Expression, proteolytic cleavage and phosphorylation was determined by densitometric analysis normalized to the exosome marker CD9. Results showed a significant increase in phosphorylation of the activating S130 site in NKCC2, the drug target for frusemide, in women with pre-eclampsia compared with normal pregnant women. Phosphorylation of the activating sites T101/105 in NKCC2 was similar but the activating T60 site in NCC, the drug target for thiazide diuretics, showed significantly less phosphorylation in pre-eclampsia compared with normal pregnancy. Expression of the larger forms of the α subunit of ENaC, the drug target for amiloride, was significantly greater in pre-eclampsia, with more fragmentation of theγ subunit. The differences observed are predicted to increase the activity of NKCC2 and ENaC while reducing that of NCC. This will increase sodium reabsorption, and so contribute to hypertension in pre-eclampsia.
Collapse
Affiliation(s)
- Chih-Chiang Hu
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Katerelos
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
| | - Suet-Wan Choy
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Amy Crossthwaite
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Susan P. Walker
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gabrielle Pell
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Mardiana Lee
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Natasha Cook
- Obstetrics and Gynecology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter F. Mount
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Kathy Paizis
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - David A. Power
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Lee M, Katerelos M, Gleich K, Galic S, Kemp BE, Mount PF, Power DA. Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the Anti-Fibrotic Effect of Metformin. J Am Soc Nephrol 2018; 29:2326-2336. [PMID: 29976587 DOI: 10.1681/asn.2018010050] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expression of genes regulating fatty acid metabolism is reduced in tubular epithelial cells from kidneys with tubulointerstitial fibrosis (TIF), thus decreasing the energy produced by fatty acid oxidation (FAO). Acetyl-CoA carboxylase (ACC), a target for the energy-sensing AMP-activating protein kinase (AMPK), is the major controller of the rate of FAO within cells. Metformin has a well described antifibrotic effect, and increases phosphorylation of ACC by AMPK, thereby increasing FAO. METHODS We evaluated phosphorylation of ACC in cell and mouse nephropathy models, as well as the effects of metformin administration in mice with and without mutations that reduce ACC phosphorylation. RESULTS Reduced phosphorylation of ACC on the AMPK site Ser79 occurred in both tubular epithelial cells treated with folate to mimic cellular injury and in wild-type (WT) mice after induction of the folic acid nephropathy model. When this effect was exaggerated in mice with knock-in (KI) Ser to Ala mutations of the phosphorylation sites in ACC, lipid accumulation and fibrosis increased significantly compared with WT. The effect of ACC phosphorylation on fibrosis was confirmed in the unilateral ureteric obstruction model, which showed significantly increased lipid accumulation and fibrosis in the KI mice. Metformin use was associated with significantly reduced fibrosis and lipid accumulation in WT mice. In contrast, in the KI mice, the drug was associated with worsened fibrosis. CONCLUSIONS These data indicate that reduced phosphorylation of ACC after renal injury contributes to the development of TIF, and that phosphorylation of ACC is required for metformin's antifibrotic action in the kidney.
Collapse
Affiliation(s)
- Mardiana Lee
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia
| | | | - Kurt Gleich
- Kidney Laboratory, Department of Nephrology, and
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and
| | - Bruce E Kemp
- Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Peter F Mount
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - David A Power
- Kidney Laboratory, Department of Nephrology, and .,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
7
|
Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens 2017; 26:375-383. [DOI: 10.1097/mnh.0000000000000349] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Wang B, Wen D, Li H, Wang-France J, Sansom SC. Net K + secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int 2017; 92:864-875. [PMID: 28688582 DOI: 10.1016/j.kint.2017.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022]
Abstract
Because of its cardio-protective effects, a low-Na, high-K diet (LNaHK) is often warranted in conjunction with diuretics to treat hypertensive patients. However, it is necessary to understand the renal handling of such diets in order to choose the best diuretic. Wild-type (WT) or Renal Outer Medullary K channel (ROMK) knockout mice (KO) were given a regular (CTRL), LNaHK, or high-K diet (HK) for 4-7 days. On LNaHK, mice treated with either IP furosemide for 12 hrs, or given furosemide in drinking water for 7 days, exhibited decreased K clearance. We used free-flow micropuncture to measure the [K+] in the early distal tubule (EDT [K+]) before and after furosemide treatment. Furosemide increased the EDT [K+] in WT on CTRL but decreased that in WT on LNaHK. Furosemide did not affect the EDT [K+] of KO on LNaHK or WT on HK. Furosemide-sensitive Na+ excretion was significantly greater in mice on LNaHK than those on CTRL or HK. Patch clamp analysis of split-open TALs revealed that 70-pS ROMK exhibited a higher open probability (Po) but similar density in mice on LNaHK, compared with CTRL. No difference was found in the density or Po of the 30 pS K channels between the two groups. These results indicate mice on LNaHK exhibited furosemide-sensitive net K+ secretion in the TAL that is dependent on increased NKCC2 activity and mediated by ROMK. We conclude that furosemide is a K-sparing diuretic by decreasing the TAL net K+ secretion in subjects on LNaHK.
Collapse
Affiliation(s)
- Bangchen Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Donghai Wen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Huaqing Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jun Wang-France
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven C Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
9
|
Role of Cytochrome P450 (CYP)1A in Hyperoxic Lung Injury: Analysis of the Transcriptome and Proteome. Sci Rep 2017; 7:642. [PMID: 28377578 PMCID: PMC5428698 DOI: 10.1038/s41598-017-00516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Hyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown. Our objective was to characterize genotype specific differences in the transcriptome and proteome of acute hyperoxic lung injury using the omics platforms: microarray and Reverse Phase Proteomic Array. Wild type (WT), Cyp1a1−/− and Cyp1a2−/− (8–10 wk, C57BL/6J background) mice were exposed to hyperoxia (FiO2 > 0.95) for 48 hours. Comparison of transcriptome changes in hyperoxia-exposed animals (WT versus knock-out) identified 171 genes unique to Cyp1a1−/− and 119 unique to Cyp1a2−/− mice. Gene Set Enrichment Analysis revealed pathways including apoptosis, DNA repair and early estrogen response that were differentially regulated between WT, Cyp1a1−/− and Cyp1a2−/− mice. Candidate genes from these pathways were validated at the mRNA and protein level. Quantification of oxidative DNA adducts with 32P-postlabeling also revealed genotype specific differences. These findings provide novel insights into mechanisms behind the differences in susceptibility of Cyp1a1−/− and Cyp1a2−/− mice to HLI and suggest novel pathways that need to be investigated as possible therapeutic targets for acute lung injury.
Collapse
|
10
|
Lazo-Fernández Y, Baile G, Meade P, Torcal P, Martínez L, Ibañez C, Bernal ML, Viollet B, Giménez I. Kidney-specific genetic deletion of both AMPK α-subunits causes salt and water wasting. Am J Physiol Renal Physiol 2016; 312:F352-F365. [PMID: 28179232 DOI: 10.1152/ajprenal.00169.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
AMP-activated kinase (AMPK) controls cell energy homeostasis by modulating ATP synthesis and expenditure. In vitro studies have suggested AMPK may also control key elements of renal epithelial electrolyte transport but in vivo physiological confirmation is still insufficient. We studied sodium renal handling and extracellular volume regulation in mice with genetic deletion of AMPK catalytic subunits. AMPKα1 knockout (KO) mice exhibit normal renal sodium handling and a moderate antidiuretic state. This is accompanied by higher urinary aldosterone excretion rates and reduced blood pressure. Plasma volume, however, was found to be increased compared with wild-type mice. Thus blood volume is preserved despite a significantly lower hematocrit. The lack of a defect in renal function in AMPKα1 KO mice could be explained by a compensatory upregulation in AMPK α2-subunit. Therefore, we used the Cre-loxP system to knock down AMPKα2 expression in renal epithelial cells. Combining this approach with the systemic deletion of AMPKα1 we achieved reduced renal AMPK activity, accompanied by a shift to a moderate water- and salt-wasting phenotype. Thus we confirm the physiologically relevant role of AMPK in the kidney. Furthermore, our results indicate that in vivo AMPK activity stimulates renal sodium and water reabsorption.
Collapse
Affiliation(s)
| | - Goretti Baile
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | - Patricia Meade
- Department of Cellular Biology and Biochemistry University of Zaragoza, Zaragoza, Spain.,IIS Aragón. Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Pilar Torcal
- IIS Aragón. Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Laura Martínez
- IIS Aragón. Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Carmen Ibañez
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | - Maria Luisa Bernal
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS (UMR 8104), Paris, France; and.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ignacio Giménez
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain; .,IIS Aragón. Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| |
Collapse
|
11
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
12
|
|
13
|
Obesity-Related Chronic Kidney Disease-The Role of Lipid Metabolism. Metabolites 2015; 5:720-32. [PMID: 26690487 PMCID: PMC4693192 DOI: 10.3390/metabo5040720] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity is an independent risk factor for chronic kidney disease (CKD). The mechanisms linking obesity and CKD include systemic changes such as high blood pressure and hyperglycemia, and intrarenal effects relating to lipid accumulation. Normal lipid metabolism is integral to renal physiology and disturbances of renal lipid and energy metabolism are increasingly being linked with kidney disease. AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) are important regulators of fatty acid oxidation, which is frequently abnormal in the kidney with CKD. A high fat diet reduces renal AMPK activity, thereby contributing to reduced fatty acid oxidation and energy imbalance, and treatments to activate AMPK are beneficial in animal models of obesity-related CKD. Studies have found that the specific cell types affected by excessive lipid accumulation are proximal tubular cells, podocytes, and mesangial cells. Targeting disturbances of renal energy metabolism is a promising approach to addressing the current epidemic of obesity-related kidney disease.
Collapse
|
14
|
Guerra B, Fischer M, Schaefer S, Issinger OG. The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:125. [PMID: 26480820 PMCID: PMC4612421 DOI: 10.1186/s13046-015-0234-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023]
Abstract
Background Multi-drug resistance and predisposition to metastasize are major clinical problems in cancer treatment. Malignant primary brain tumor and pancreatic cancer are two well-known examples of malignant tumors resistant to conventional therapies where aberrant EGFR-mediated and NF-κB signal transduction pathways are likely to play an important role. We have recently identified 1,3-Dichloro-6-[(E)-((4-methoxyphenyl)imino)methyl] diben-zo(b,d) furan-2,7-diol (D11) as a potent and selective inhibitor of CK2 a serine/threonine protein kinase that modulates the aforementioned signaling cascades. Methods Human cancer cell lines (glioblastoma and pancreatic adenocarcinoma) resistant to conventional chemotherapeutic agents were incubated with increasing concentrations of D11 for variable amounts of time. Cell viability, cell death and effects on major signal transduction pathways deregulated in cancer cells were analyzed by ELISA, FACS and Western blot-based assays, respectively. Moreover, effects on cell migration and in cell protein-protein association were investigated by wound-healing and in situ proximity ligation assays, respectively. Results We show here, that D11 treatment leads to i) significant caspase-mediated apoptotic cell death, ii) down-regulation of EGFR expression and iii) inhibition of NF-κB transcriptional activity. Furthermore, cell exposure to D11 results in impaired cell migration and correlates with reduced expression of the ion co-transporter and cell volume regulator Na+-K+-2Cl− (NKCC1). Conclusions Data reported here underline the therapeutic potential of D11 with respect to certain types of cancer that carry aberrant intracellular signaling cascades and/or exhibit sustained cell migration and suggest a new therapeutic strategy against chemotherapy resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0234-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Mette Fischer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Schaefer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
15
|
Verouti SN, Boscardin E, Hummler E, Frateschi S. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 2015; 21:60-72. [PMID: 25613995 DOI: 10.1016/j.coph.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Davies M, Fraser SA, Galic S, Choy SW, Katerelos M, Gleich K, Kemp BE, Mount PF, Power DA. Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK. Am J Physiol Renal Physiol 2014; 307:F96-F106. [PMID: 24808538 DOI: 10.1152/ajprenal.00524.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. When we examined Na(+) transporter expression, Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) was unchanged in whole kidney and reduced in the cortex, Na(+)-Cl(-) cotransporter (NCC) and α-epithelial Na(+) channel (ENaC) and γ-ENaC were unchanged, and β-ENaC was reduced. Phosphorylation of NCC was unaltered. Activating phosphorylation of NKCC2 at S126 was increased 2.5-fold. Activation of STE-20/SPS1-related proline-alanine-rich protein kinase (SPAK)/oxidative stress responsive 1 kinase (OSR1) was increased in kidneys from HFD-fed mice, and enhanced phosphorylation of NKCC2 at T96/T101 was evident in the cortex. Increased activity of NKCC2 in vivo was confirmed with diuretic experiments. HFD-fed mice had reduced activating phosphorylation of AMP-activated protein kinase (AMPK) in the renal cortex. In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK(+/+) murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK(-/-) MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK(-/-) MEFs than in AMPK(+/+) MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na(+) reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.
Collapse
Affiliation(s)
- Matthew Davies
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and
| | - Scott A Fraser
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sandra Galic
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Suet-Wan Choy
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and
| | - Marina Katerelos
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia
| | - Kurt Gleich
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia
| | - Bruce E Kemp
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Peter F Mount
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and
| | - David A Power
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and
| |
Collapse
|
17
|
Fraser SA, Davies M, Katerelos M, Gleich K, Choy SW, Steel R, Galic S, Mount PF, Kemp BE, Power DA. Activation of AMPK reduces the co-transporter activity of NKCC1. Mol Membr Biol 2014; 31:95-102. [PMID: 24702155 DOI: 10.3109/09687688.2014.902128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The co-transporter activity of Na(+)-K(+)-2Cl(-) 1 (NKCC1) is dependent on phosphorylation. In this study we show the energy-sensing kinase AMPK inhibits NKCC1 activity. Three separate AMPK activators (AICAR, Phenformin and A-769662) inhibited NKCC1 flux in a variety of nucleated cells. Treatment with A-769662 resulted in a reduction of NKCC1(T212/T217) phosphorylation, and this was reversed by treatment with the non-selective AMPK inhibitor Compound C. AMPK dependence was confirmed by treatment of AMPK null mouse embryonic fibroblasts, where A-769662 had no effect on NKCC1 mediated transport. AMPK was found to directly phosphorylate a recombinant human-NKCC1 N-terminal fragment (1-293) with the phosphorylated site identified as S77. Mutation of Serine 77 to Alanine partially prevented the inhibitory effect of A-769662 on NKCC1 activity. In conclusion, AMPK can act to reduce NKCC1-mediated transport. While the exact mechanism is still unclear there is evidence for both a direct effect on phosphorylation of S77 and reduced phosphorylation of T212/217.
Collapse
Affiliation(s)
- Scott A Fraser
- Institute for Breathing and Sleep, Kidney Laboratory , Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|