1
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Wang B J, Wang S, Xiao M, Zhang J, Wang A J, Guo Y, Tang Y, Gu J. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res 2020; 164:105331. [PMID: 33285232 DOI: 10.1016/j.phrs.2020.105331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.
Collapse
Affiliation(s)
- Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning, 110016, China
| | - Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Schell C, Kretz O, Bregenzer A, Rogg M, Helmstädter M, Lisewski U, Gotthardt M, Tharaux PL, Huber TB, Grahammer F. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS One 2015; 10:e0129424. [PMID: 26076477 PMCID: PMC4468136 DOI: 10.1371/journal.pone.0129424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/10/2015] [Indexed: 12/27/2022] Open
Abstract
The coxsackie- and adenovirus receptor (CXADR) is a member of the immunoglobulin protein superfamily, present in various epithelial cells including glomerular epithelial cells. Beside its known function as a virus receptor, it also constitutes an integral part of cell-junctions. Previous studies in the zebrafish pronephros postulated a potential role of CXADR for the terminal differentiation of glomerular podocytes and correct patterning of the elaborated foot process architecture. However, due to early embryonic lethality of constitutive Cxadr knockout mice, mammalian data on kidney epithelial cells have been lacking. Interestingly, Cxadr is robustly expressed during podocyte development and in adulthood in response to glomerular injury. We therefore used a conditional transgenic approach to elucidate the function of Cxadr for podocyte development and stress response. Surprisingly, we could not discern a developmental phenotype in podocyte specific Cxadr knock-out mice. In addition, despite a significant up regulation of CXADR during toxic, genetic and immunologic podocyte injury, we could not detect any impact of Cxadr on these injury models. Thus these data indicate that in contrast to lower vertebrate models, mammalian podocytes have acquired molecular programs to compensate for the loss of Cxadr.
Collapse
Affiliation(s)
- Christoph Schell
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Department of Neuroanatomy, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Andreas Bregenzer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | | | - Ulrike Lisewski
- Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Tobias B. Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| | - Florian Grahammer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|