1
|
Liu J, Zeng D, Wang Y, Deng F, Wu S, Deng Z. Identification of druggable targets in acute kidney injury by proteome- and transcriptome-wide Mendelian randomization and bioinformatics analysis. Biol Direct 2025; 20:38. [PMID: 40148878 PMCID: PMC11951703 DOI: 10.1186/s13062-025-00631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) remains a critical condition with limited therapeutic options, predominantly managed by renal replacement therapy. The challenge of developing targeted treatments persists. METHODS We integrated genetic data related to druggable proteins and gene expression with AKI genome-wide association study (GWAS) findings. Based on multi-omics Mendelian randomization (MR), we identified the potential causal influence of 5,883 unique proteins and genes on AKI. We also performed using reverse MR and external cohort-based analysis to verify the robustness of this causal relationship. Expression patterns of these targets were examined using bulk transcriptome and single-cell transcriptome data. In addition, drug repurposing analyses were conducted to explore the potential of existing medications. We also constructed a molecular interaction network to explore the interplay between identified targets and known drugs. RESULTS Genetically predicted levels of seven proteins and twelve genes were associated with an increased risk of AKI. Of these, six targets (NCF1, TNFRSF1B, APEH, ACADSB, ADD1, and FAM3B) were prioritized based on robust evidence and validated in independent cohorts. Reverse MR showed a one-way causal relationship of targets. These targets are predominantly expressed in proximal tubular cells, endothelial cells, collecting duct-principal cells, and immune cells within both AKI-affected and normal tissues. Several promising drug repurposing opportunities were identified, such as telmisartan-NCF1, calcitriol-ACADSB, and ethinyl estradiol-ACADSB. The molecular interaction mapping and pathway integration analysis provided further insights, suggesting potential strategies for combinatorial therapies. CONCLUSIONS This extensive investigation identified several promising therapeutic targets for AKI and highlighted opportunities for drug repurposing. These findings offer valuable insights that could shape future research and the development of targeted treatments.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianjie Zeng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Liu WH, Cao F, Lin M, Hong FY. Comprehensive Analysis of RNA Methylation-Regulated Gene Signature and Immune Infiltration in Ischemia/Reperfusion-Induced Acute Kidney Injury. Kidney Blood Press Res 2024; 50:14-32. [PMID: 39600181 PMCID: PMC11844686 DOI: 10.1159/000542787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The morbidity and mortality of acute kidney injury (AKI) are increasing. Epigenetic regulation and immune cell infiltration are thought to be involved in AKI. However, the relationship between epigenetic regulation and immune cell infiltration in AKI has not been elucidated. This study was conducted to identify the differentially expressed genes (DEGs), differentially expressed RNA methylation genes (DEMGs), and infiltrated immune cells in the kidneys of ischemia-reperfusion induced-acute kidney injury (IRI-AKI) models and further explore their relationships in IRI-AKI. METHODS This is a bioinformatic analysis using R programming language in 3 selected IRI-AKI datasets from the Gene Expression Omnibus (GEO) database, including 16 IRI-AKI kidney tissues and 10 normal kidney tissues. The DEGs were screened, and enrichment pathways were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEMGs and core DEMGs were identified using the R package. The ROC curve was plotted to predict disease occurrence of 7 core DEMGs. The correlation of 7 core DEMGs and other genes was analyzed using Pearson's correlation test. The gene set enrichment analysis (GSEA) of each DEMG was conducted using the R package. The upstream miRNAs and transcript factors of 7 core DEMGs were predicted based on the RegNetwork database and Cytoscape software. The STITCH database was used to predict the possible binding compounds of the 7 core DEMGs. Immune cell infiltration in kidney tissues between the IRI-AKI group and control group was evaluated using the R package. RESULTS A total of 2,367 DEGs were obtained, including 1,180 upregulated and 1,187 downregulated genes in IRI-AKI kidney associated with the cell structure, proliferation, molecule binding/interaction, and signaling pathways such as the leukocyte migration and chemokine signaling pathways. Ten DEMGs were identified, with Ythdf1, Rbm15, Trmt6, Hnrnpc, and Dnmt1 being significantly upregulated, while Lrpprc, Cyfip2, Mettl3, Ncbp2, and Nudt7 were significantly downregulated in IRI-AKI tissues. The molecules interacting with 7 core DEMGs were identified. Significant changes in the infiltration of 8 types of immune cells were observed in IRI-AKI kidneys compared to normal controls. The significant correlation between 6 core DEMGs and the infiltration of immune cells was observed. CONCLUSION IRI may induce AKI through RNA methylation to regulate the expression of genes involved in immune cell infiltration.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China,
| | - Fang Cao
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Miao Lin
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Fu-Yuan Hong
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
3
|
Demirjian S, Huml A, Bakaeen F, Poggio E, Geube M, Shaw A, Gillinov AM, Gadegbeku CA. Sex bias in prediction and diagnosis of cardiac surgery associated acute kidney injury. BMC Nephrol 2024; 25:180. [PMID: 38778259 PMCID: PMC11112848 DOI: 10.1186/s12882-024-03614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Female sex has been recognized as a risk factor for cardiac surgery associated acute kidney injury (CS-AKI). The current study sought to evaluate whether female sex is a risk factor for CS-AKI, or modifies the association of peri-operative change in serum creatinine with CS-AKI. METHODS Observational study of adult patients undergoing cardiac surgery between 2000 and 2019 in a single U.S. center. The main variable of interest was registered patient sex, identified from electronic medical records. The main outcome was CS-AKI within 2 weeks of surgery. RESULTS Of 58526 patients, 19353 (33%) were female; 12934 (22%) incurred AKI based on ≥ 0.3 mg/dL or ≥ 50% rise in serum creatinine (any AKI), 3320 (5.7%) had moderate to severe AKI, and 1018 (1.7%) required dialysis within 2 weeks of surgery. Female sex was associated with higher risk for AKI in models that were based on preoperative serum creatinine (OR, 1.35; 95% CI, 1.29-1.42), and lower risk with the use of estimated glomerular filtration, (OR, 0.90; 95% CI, 0.86-0.95). The risk for moderate to severe CS-AKI for a given immediate peri-operative change in serum creatinine was higher in female compared to male patients (p < .0001 and p < .0001 for non-linearity), and the association was modified by pre-operative kidney function (p < .0001 for interaction). CONCLUSIONS The association of patient sex with CS-AKI and its direction was dependent on the operational definition of pre-operative kidney function, and differential outcome misclassification due to AKI defined by absolute change in serum creatinine.
Collapse
Affiliation(s)
- Sevag Demirjian
- Department of Kidney Medicine, Cleveland Clinic, 9500 Euclid Avenue, Q7, Cleveland, OH, 44195, USA.
| | - Anne Huml
- Department of Kidney Medicine, Cleveland Clinic, 9500 Euclid Avenue, Q7, Cleveland, OH, 44195, USA
| | - Faisal Bakaeen
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Emilio Poggio
- Department of Kidney Medicine, Cleveland Clinic, 9500 Euclid Avenue, Q7, Cleveland, OH, 44195, USA
| | - Mariya Geube
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Shaw
- Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, OH, USA
| | - A Marc Gillinov
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Cleveland Clinic, 9500 Euclid Avenue, Q7, Cleveland, OH, 44195, USA
| |
Collapse
|
4
|
Demirjian S, Huml A, Bakaeen F, Poggio E, Geube M, Shaw A, Gillinov AM, Gadegbeku CA. Sex Bias in Prediction and Diagnosis of Cardiac Surgery Associated Acute Kidney Injury. RESEARCH SQUARE 2024:rs.3.rs-3660617. [PMID: 38558997 PMCID: PMC10980107 DOI: 10.21203/rs.3.rs-3660617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Female sex has been recognized as a risk factor for cardiac surgery associated acute kidney injury (CS-AKI). The current study sought to evaluate whether female sex is a risk factor for CS-AKI, or modifies the association of peri-operative change in serum creatinine with CS-AKI. Methods Observational study of adult patients undergoing cardiac surgery between 2000 and 2019 in a single U.S. center. The main variable of interest was registered patient sex, identified from electronic medical records. The main outcome was CS-AKI within 2 weeks of surgery. Results Of 58526 patients, 19353 (33%) were female; 12934 (22%) incurred AKI based on ≥ 0.3 mg/dL or ≥ 50% rise in serum creatinine (any AKI), 3320 (5.7%) had moderate to severe AKI, and 1018 (1.7%) required dialysis within 2 weeks of surgery. Female sex was associated with higher risk for AKI in models that were based on preoperative serum creatinine (OR, 1.35; 95% CI, 1.29-1.42), and lower risk with the use of estimated glomerular filtration, (OR, 0.90; 95% CI, 0.86-0.95). The risk for moderate to severe CS-AKI for a given immediate peri-operative change in serum creatinine was higher in female compared to male patients (p < .0001 and p < .0001 for non-linearity), and the association was modified by pre-operative kidney function (p < .0001 for interaction). Conclusions The association of patient sex with CS-AKI and its direction was dependent on the operational definition of pre-operative kidney function, and differential outcome misclassification due to AKI defined by absolute change in serum creatinine.
Collapse
|
5
|
Curtis LM. Sex and Gender Differences in AKI. KIDNEY360 2024; 5:160-167. [PMID: 37990360 PMCID: PMC10833607 DOI: 10.34067/kid.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Sex differences in AKI continue to be identified. Generally, women are protected from AKI when compared to men. Much of the protection exhibited in women is diminished after menopause. These sex and age effects have also been noted in animal models of AKI. Gonadal hormones, as modifiers of incidence, severity, and progression of AKI, have been offered as likely contributors to this sex and age effect. In animal models of AKI, estrogen and testosterone seem to modulate susceptibility. Questions remain however regarding cellular and molecular changes that are initiated by modulation of these hormones because both estrogen and testosterone have effects across cell types that play a role in AKI. Although findings have largely been informed by studies in males, molecular pathways that are involved in the initiation and progression of AKI may be modulated by gonadal hormones. Compounding the hormone-receptor effects are developmental effects of sex chromosomal complement and epigenetic influences that may confer sex-based baseline differences in gene and protein expression, and gene dosage effects of X inactivation and escape on molecular pathways. Elucidation of sex-based protection may afford a more complete view of AKI and potential therapeutic interventions. Furthermore, the effect on susceptibility to AKI in transgender patients, who receive life-altering and essential gender-affirming hormone therapy, requires greater attention. In this review, several potential contributors to the sex differences observed in humans and animal models are discussed.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
van der Burgh AC, Aribas E, Ikram MA, Kavousi M, Neggers SJ, Hoorn EJ, Chaker L. Sex Differences in the Association Between Serum Testosterone and Kidney Function in the General Population. Kidney Int Rep 2023; 8:1342-1351. [PMID: 37441475 PMCID: PMC10334405 DOI: 10.1016/j.ekir.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Testosterone might prevent kidney function decline, although evidence is limited in men and lacking in women from the general population. We investigated the association between serum testosterone and kidney function in men and women from a large population-based cohort study. Methods Participants aged ≥45 years with available measurements of serum testosterone, sex hormone-binding globulin (SHBG), creatinine, and cystatine C were included. Assessments of kidney function included baseline assessments of the estimated glomerular filtration rate (eGFR) based on serum creatinine (eGFRcreat) or serum cystatin C (eGFRcys), and the urine albumin-to-creatinine ratio (ACR), and repeated assessments of eGFRcreat. Linear regression and linear mixed models were used to assess the associations of serum free and total testosterone with kidney function, stratified for sex. Results A total of 4095 men and 5389 women (mean age 65.2 years) were included. In men, higher free testosterone was associated with lower eGFRcreat (beta -0.63, 95% confidence interval [CI]: -1.05; -0.21), higher eGFRcys (beta 0.56, 95% CI: 0.07; 1.05), and lower ACR (beta -0.25, 95% CI: -0.35; -0.16) at baseline. Higher total testosterone was associated with higher baseline and follow-up eGFRcreat, and with lower eGFRcreat when additionally adjusted for SHBG. In women, higher free testosterone was associated with lower baseline eGFRcreat and eGFRcys (beta -1.03, 95% CI: -1.36; -0.71; beta -1.07, 95% CI: -1.44; -0.70; respectively) and lower eGFRcreat over time (beta -0.78, 95% CI: -1.10; -0.46), but not with ACR. Conclusions eGFRcys might be a better parameter than eGFRcreat for the association of testosterone with kidney function, although further studies investigating this are needed. Furthermore, we identified sex differences in the association between testosterone and kidney function, with a positive association in men and a negative association in women.
Collapse
Affiliation(s)
- Anna C. van der Burgh
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elif Aribas
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Ewout J. Hoorn
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Nolasco-Pérez TDJ, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Fernández-Rivera O, Salazar-Castañón VH, Legorreta-Herrera M. Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection. Front Cell Infect Microbiol 2023; 13:1146356. [PMID: 37384220 PMCID: PMC10296187 DOI: 10.3389/fcimb.2023.1146356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens. Methods To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies. Results We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
8
|
Miao J, Huang J, Liang Y, Zhang Y, Li J, Meng P, Shen W, Li X, Wu Q, Wang X, Niu H, Tang Y, Zhou S, Zhou L. Sirtuin 6 is a key contributor to gender differences in acute kidney injury. Cell Death Discov 2023; 9:134. [PMID: 37185276 PMCID: PMC10130034 DOI: 10.1038/s41420-023-01432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Acute kidney injury (AKI) is rapidly increasing nowadays and at a high risk to progress into chronic kidney disease (CKD). Of note, men are more susceptive to AKI, suggesting gender differences in AKI patients. However, the underlying mechanisms remain largely unclear. To test it, we adopted two experimental models of AKI, including ischemia/reperfusion injury and rhabdomyolysis, which were constructed in age-matched male and female mice. We found severe damages of tubular apoptosis, mitochondrial dysfunction, and loss of renal function showing in male mice, while female mice only had very mild injury. We further tested the expression of Sirtuins, and found that female mice could preserve more Sirtuin members' expression in case of kidney damage. Among Sirtuin family, Sirtuin 6 was maximally preserved in injured kidney in female mice, suggesting its important role involved in the gender differences of AKI pathogenesis. We then found that knockdown of androgen receptor (AR) attenuated tubular damage, mitochondrial dysfunction and retarded the loss of renal function. Overexpression of Sirtuin 6 also showed similar results. Furthermore, in cultured tubular cells, dihydrotestosterone (DHT) decreased Sirtuin 6 expression and exacerbated cell apoptosis. Ectopic expression of Sirtuin 6 sufficiently inhibited DHT-induced cell apoptosis. Mechanically, we found AR inhibited Sirtuin 6, leading to the repression of binding of Sirtuin 6 with PGC-1α. This resulted in acetylation of PGC-1α and inhibition of its activity, further triggered the loss of mitochondrial homeostasis. Our results provided new insights to the underlying mechanisms of gender differences in AKI, suggesting Sirtuin 6 maybe a new therapeutic target for preventing AKI in male patients.
Collapse
Affiliation(s)
- Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxin Niu
- Department of General Practice, Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
10
|
Estrogen Protects against Renal Ischemia-Reperfusion Injury by Regulating Th17/Treg Cell Immune Balance. DISEASE MARKERS 2022; 2022:7812099. [PMID: 36246554 PMCID: PMC9560860 DOI: 10.1155/2022/7812099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 12/31/2022]
Abstract
Inflammation is a critical mediator of renal ischemia-reperfusion (I/R) injury (IRI), and T lymphocytes exert a key role in the renal IRI-induced inflammation. Connexin 43 (Cx43) is related to the maintenance of T lymphocyte homeostasis. Various preclinical researches have reported that estrogen is a renoprotective agent based on its anti-inflammatory potential. The present research is aimed at studying the role of T lymphocytes activated by Cx43 in 17β-estradiol-mediated protection against renal IRI. Female rats were classified into six groups: control rats, I/R rats, ovariectomized rats, ovariectomized I/R rats, and ovariectomized rats treated with 17β-estradiol or gap27. Levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and Paller scoring were dramatically increased in I/R rats, especially in ovariectomized rats. By contrast, these indicators were markedly decreased by administering estradiol or gap27. Immunofluorescence staining revealed that CD4+ T cells infiltrated kidney tissues in the early stage of IRI. In both peripheral blood and renal tissue, the proportion of CD3+CD4+ T cells and ratio of CD4+ to CD8+ were high in I/R rats, especially in ovariectomized rats. The proportion of CD3+CD8+ T cells was low in peripheral blood but high in renal tissues. Administration of estrogen or Gap27 reversed these effects. IL-17 levels in both serum and tissue homogenate were significantly increased in ovariectomized rats subjected to I/R but significantly decreased in estrogen or gap 27 treated rats. The opposite trend was observed for IL-10 levels. Correlation analysis demonstrated that IL-17 was correlated positively with BUN, Scr, and Paller scores, while IL-10 was negatively correlated with these indicators. Western blot showed that Cx43 expression was markedly increased in the peripheral blood T lymphocytes of I/R rats, especially ovariectomized rats. After intervention with estrogen and gap27, Cx43 expression was significantly downregulated. These findings indicate that Cx43 may participate in the regulation of Th17/Treg balance by estrogen against renal IRI.
Collapse
|
11
|
Fendereski K, Ghaed MA, Calvert JK, Hotaling JM. Hypogonadism and urologic surgeries: a narrative review. Transl Androl Urol 2022; 11:1045-1062. [PMID: 35958902 PMCID: PMC9360521 DOI: 10.21037/tau-22-308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Previous studies indicated that the treatment of male hypogonadism can be beneficial for intraoperative and postsurgical outcomes. In this study, we aimed to determine the impact of male hypogonadism on urologic surgeries. We provided an overview of the key studies in the field with the focus on the outcomes of urologic surgeries in hypogonadal men with/without testosterone replacement therapy (TRT). Methods We performed a literature review in PubMed and Google Scholar databases for the most relevant articles pertaining to the outlined topics without placing any limitations on publication years or study designs. We included full-text English articles published in peer reviewed journals between January 1970 and March 2022. Key Content and Findings Androgen deficiency is a common finding after major urologic surgeries. Although guidelines recommend against TRT in men with prostate carcinoma, recent investigations showed no association between TRT and disease progression and recurrence. Indeed, recent evidence suggested that low androgen levels could be related to high grade prostate carcinoma and increased risk of upgrading from low to high grade disease. Investigations on the application of TRT in benign prostatic hyperplasia (BPH) patients also revealed contrasting results. While some studies suggested higher rates of prostate-related events in men who received TRT, others showed that TRT could alleviate urinary symptoms in hypogonadal men with BPH. Decreased testosterone level is commonly seen in bladder cancer patients. The treatment of perioperative androgen deficiency can reduce postoperative morbidities and lower the risk of recurrence in these patients. Low testosterone levels are observed in approximately half of the men who undergo artificial urinary sphincter (AUS) placement and can increase the risk of complications. Conclusions The role of testosterone treatment in patients with urologic diseases such as prostate carcinoma and BPH is controversial. Further investigations are needed to determine the impact of hypogonadism and TRT on the outcomes of urologic surgeries in patients with androgen deficiency.
Collapse
Affiliation(s)
- Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mohammad Ali Ghaed
- Department of Urology, Rasoul Akram Hospital, Iran university of Medical Sciences, Tehran, Iran
| | - Joshua K Calvert
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
13
|
Abstract
Kidney pathophysiology is influenced by gender. Evidence suggests that kidney damage is more severe in males than in females and that sexual hormones contribute to this. Elevated prolactin concentration is common in renal impairment patients and is associated with an unfavorable prognosis. However, PRL is involved in the osmoregulatory process and promotes endothelial proliferation, dilatation, and permeability in blood vessels. Several proteinases cleavage its structure, forming vasoinhibins. These fragments have antagonistic PRL effects on endothelium and might be associated with renal endothelial dysfunction, but its role in the kidneys has not been enough investigated. Therefore, the purpose of this review is to describe the influence of sexual dimorphism and gonadal hormones on kidney damage, emphasizing the role of the hormone prolactin and its cleavage products, the vasoinhibins.
Collapse
|
14
|
Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Wang M, Zhai XY. Ibudilast Attenuates Folic Acid-Induced Acute Kidney Injury by Blocking Pyroptosis Through TLR4-Mediated NF-κB and MAPK Signaling Pathways. Front Pharmacol 2021; 12:650283. [PMID: 34025417 PMCID: PMC8139578 DOI: 10.3389/fphar.2021.650283] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Folic acid (FA)-induced renal tubule damage, which is characterized by extensive inflammation, is a common model of acute kidney injury (AKI). Pyroptosis, a pro-inflammatory form of cell death due to the activation of inflammatory caspases, is involved in AKI progression. Ibudilast, a TLR4 antagonist, has been used in the clinic to exert an anti-inflammatory effect on asthma. However, researchers have not explored whether ibudilast exerts a protective effect on AKI by inhibiting inflammation. In the present study, ibudilast reversed FA-induced AKI in mice, as indicated by the reduced serum creatinine and urea nitrogen levels, and improved renal pathology, as well as the downregulation of kidney injury marker-1. In addition, ibudilast significantly increased the production of the anti-inflammatory factor IL-10 while suppressing the secretion of the pro-inflammatory cytokine TNF-α and macrophage infiltration. Moreover, in the injured kidney, ibudilast reduced the levels of both inflammasome markers (NLRP3) and pyroptosis-related proteins (caspase-1, IL1-β, IL-18, and GSDMD cleavage), and decreased the number of TUNEL-positive cells. Further mechanistic studies showed that ibudilast administration inhibited the FA-induced upregulation of TLR4, blocked NF-κB nuclear translocation, and reduced the phosphorylation of NF-κB and IκBα, p38, ERK, and JNK. Thus, this study substantiates the protective effect of ibudilast on FA-induced AKI in mice and suggests that protection might be achieved by reducing pyroptosis and inflammation, likely through the inhibition of TLR4-mediated NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Kai-Yue Wang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Peng-Zhi Wan
- Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Institute of Nephropathology, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Jin T, Wang L, Li D, Yang T, Zhou Y. Testosterone aggravates cerebral vascular injury by reducing plasma HDL levels. Open Life Sci 2020; 15:1042-1048. [PMID: 33817290 PMCID: PMC7874553 DOI: 10.1515/biol-2020-0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Testosterone is often used to improve the physiological function. But increased testosterone levels affect blood lipids and cause inflammation and oxidative stress, which are risk factors for vascular diseases. This study aimed at investigating the effects of testosterone on cerebral vascular injury using an established intracranial aneurysm (IA) model. Sixteen-week-old female C57Bl/6 mice were subcutaneously infused with testosterone propionate (TP; 5 mg/kg day) or plain soybean oil (controls) for 6 weeks. After 2 weeks of treatment, mice were given angiotensin II-elastase for another 4 weeks. The results showed that TP significantly increased cell apoptosis and reactive oxygen species production in cerebral artery, together with increases in plasma tumor necrosis factor-α (TNF-α) levels and in urinary 8-isoprostane levels. Plasma assays showed that 2 weeks after TP or soybean oil administration, the high-density lipoprotein (HDL) level was higher in the TP group than in controls. In vitro studies showed that testosterone increased TNF-α and monocyte chemotactic protein-1 mRNA and protein expression levels in RAW 264.7 macrophages. In summary, by reducing the HDL level, TP aggravates cerebral artery injury by increasing cell apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Tao Jin
- Department of Neurosurgery, Ankang Central Hospital, Ankang 725000, People's Republic of China
| | - Lu Wang
- Department of Neurosurgery, Ankang Central Hospital, Ankang 725000, People's Republic of China
| | - Dongbo Li
- Department of Neurosurgery, Ankang Central Hospital, Ankang 725000, People's Republic of China
| | - Tao Yang
- Department of Neurosurgery, Ankang Central Hospital, Ankang 725000, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical Hospital, Xi'an 710032, Shanxi, People's Republic of China
| |
Collapse
|
16
|
Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med 2020; 25:1825-1837. [PMID: 33369146 PMCID: PMC7882969 DOI: 10.1111/jcmm.16205] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
17
|
Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng 2020; 6:6528-6539. [PMID: 33320610 DOI: 10.1021/acsbiomaterials.0c01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (IR)-induced oxidative stress, accompanied by inflammatory responses, contributes to morbidity and mortality in numerous diseases such as acute coronary syndrome, stroke, organ transplantation, and limb injury. Ischemia results in profound hypoxia and tissue dysfunction, whereas subsequent reperfusion further aggravates ischemic tissue damage through inducing cell death and activating inflammatory responses. In this review, we highlight recent studies of therapeutic strategies against IR injury. Furthermore, nanotechnology offers significant improvements in this area. Hence, we also review recent advances in nanomedicines for IR therapy, suggesting them as potent and promising strategies to improve drug delivery to IR-injured tissues and achieve protective effects.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xiaoxu Zhang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| |
Collapse
|
18
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Sessa F, Salerno M, Bertozzi G, Cipolloni L, Messina G, Aromatario M, Polo L, Turillazzi E, Pomara C. miRNAs as Novel Biomarkers of Chronic Kidney Injury in Anabolic-Androgenic Steroid Users: An Experimental Study. Front Pharmacol 2020; 11:563756. [PMID: 33041804 PMCID: PMC7525215 DOI: 10.3389/fphar.2020.563756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs are a family of 20–22 non-coding nucleotides that control gene expression by inhibiting the translation of their target messenger RNAs (mRNAs). Two models have been proposed to elucidate the mechanism of action: they act either hindering mRNA translation or enhancing mRNA degradation. Anabolic-Androgenic Steroids (AASs) represent a class of drugs used to treat several diseases. In the last few years, AASs have frequently been used for aesthetic purposes, indeed, they form part of the larger group called image- and performance-enhancing drugs (IPEDs). Long-term AAS use can lead to serious health consequences. In this regard, the present study aimed to analyze the role of several microRNAs (miRNAs) in renal damage after AAS use, to better understand the underlying mechanisms. For this purpose, two miRNAs (miR-21 and miR-205) were tested in two groups: AAS group (seven males, mean age 33.28 ± 4.68 years; mean body mass index (BMI) 27.04 ± 1.07), and chronic kidney disease (CKD) group (seven males, mean age 66.2 ± 5.4 years; mean BMI 24.75 ± 1.35). Finally, the same miRNAs were tested in the “Control” group (seven males, mean age 44.85 ± 5.75 years; mean BMI 26.5 ± 1.88). Kolmogorov-Smirnov Test was used to determine the normality of data distribution. All variables were normally distributed. Student’s t-test was used for comparisons between two groups. Analyzing the results of the present study, the two tested miRNAs (miR-21 and miR-205) were significantly higher in the CKD group compared to the AAS group, with mir-21 being much more expressed than miR-205. This study represents a pilot study to define if these expression patterns could be studied in other biological samples (plasma, urine) in subjects with different kidney injury linked to chronic kidney diseases and AAS use, to identify reliable biomarkers that could be applied in clinical and forensic diagnostics, as well as a target for toxicological investigations or therapeutic treatments.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mariarosaria Aromatario
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Polo
- Brain srl, Services and Consultancy in Health, Pavia, Italy
| | - Emanuela Turillazzi
- Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
20
|
Gender differences in the susceptibility of hospital-acquired acute kidney injury: more questions than answers. Int Urol Nephrol 2020; 52:1911-1914. [PMID: 32661623 PMCID: PMC7515943 DOI: 10.1007/s11255-020-02526-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Hospital-acquired acute kidney injury (HA-AKI) is a heterogeneous renal syndrome which occurs in different clinical settings. It is characterized by multiple aetiologies, various pathogeneses and unpredictable outcomes. HA-AKI, once predominantly viewed as a self-limited and reversible short-term condition, is now recognized as a harbinger for chronic kidney disease and a cause of long-term morbidity with an increased risk of cardiovascular, renal and cancer mortality. Recent clinical studies contradict the generally held belief that female sex is a risk factor for HA-AKI. They show, consistent with basic research performed with experimental models of AKI, that only male sex is associated with HA-AKI. The presence of testosterone, more likely than the absence of estrogen, plays a critical role in sex differences in the susceptibility of ischemia/reperfusion kidney injury. The conflicting data in epidemiological studies related to sex as susceptibility variable for human AKI, underscore the need for more rigorous, well designed observational studies taking into account the menopausal status and hormone therapy.
Collapse
|
21
|
Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathog 2020; 16:e1008506. [PMID: 32645119 PMCID: PMC7373319 DOI: 10.1371/journal.ppat.1008506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/21/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.
Collapse
|
22
|
Parente Filho SLA, Gomes PEADC, Forte GA, Lima LLL, Silva Júnior GBD, Meneses GC, Martins AMC, Daher EDF. Kidney disease associated with androgenic-anabolic steroids and vitamin supplements abuse: Be aware! Nefrologia 2019; 40:26-31. [PMID: 31585781 DOI: 10.1016/j.nefro.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023] Open
Abstract
The excessive chase for beauty standards and the rise of muscle dysmorphia have ultimately led to an increase in androgenic-anabolic steroids (AAS) and intramuscular injections of vitamins A, D and E (ADE) abuse, which is associated with several adverse effects and has become a public health issue. This review of literature discusses kidney injury associated with the use of AAS and ADE, highlighting the mechanisms of acute and chronic renal lesion, such as direct renal toxicity, glomerular hyperfiltration and hypercalcemia. Future perspectives regarding evaluation and early diagnosis of kidney injury in these patients are also discussed.
Collapse
Affiliation(s)
- Sérgio Luiz Arruda Parente Filho
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Guilherme Aguiar Forte
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Laio Ladislau Lopes Lima
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Gdayllon Cavalcante Meneses
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
23
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, Chin KY. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019; 22:129-140. [PMID: 29925283 DOI: 10.1080/13685538.2018.1482487] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Testosterone is the predominant gonadal androgen in men. Low testosterone levels are found to be associated with an increased in metabolic risk and systematic inflammation. Since adipose tissue is a source of inflammatory cytokines, testosterone may regulate inflammation by acting on adipose tissue. This review aimed to explore the role of testosterone in inflammation and its mechanism of action. Both animal studies and human studies showed that (1) testosterone deficiency was associated with an increase in pro-inflammatory cytokines; (2) testosterone substitution reduced pro-inflammatory cytokines. The suppression of inflammation by testosterone were observed in patients with coronary artery disease, prostate cancer and diabetes mellitus through the increase in anti-inflammatory cytokines (IL-10) and the decrease in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Despite these, some studies also reported a non-significant relationship. In conclusion, testosterone may possess anti-inflammatory properties but its magnitude is debatable. More evidence is needed to validate the use of testosterone as a marker and in the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Sok Kuan Wong
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Wan Nuraini Wan Hasan
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - James Jam Jolly
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Mohd Fozi Nur-Farhana
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Soelaiman Ima-Nirwana
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Kok-Yong Chin
- a Department of Pharmacology , Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur , Malaysia
| |
Collapse
|
25
|
Makary S, Abdo M, Hassan WA, Tawfik MK. Angiotensin blockade attenuates diabetic nephropathy in hypogonadal adult male rats. Can J Physiol Pharmacol 2019; 97:708-720. [PMID: 30970225 DOI: 10.1139/cjpp-2018-0572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study examined the effect of the aromatase inhibitor letrozole (0.5 mg/kg) alone or in combination with the angiotensin-receptor blocker valsartan (30 mg/kg) against streptozocin-induced diabetic nephropathy (DN) in hypogonadal (HG) rats for 12 weeks. First, we tested the HG effect on hormone levels, inflammatory cytokines, and oxidative stress in nondiabetic (ND) and diabetic (D) rats. HG was induced with the luteinizing hormone-releasing hormone antagonist cetrorelix (0.71 mg/kg). Diabetes enhanced hormonal hypogonadism and increased inflammation and oxidative stress. Next, experiments examined the effect of early letrozole and valsartan intervention on DN in HG rats. HG-ND and HG-D rats were treated with letrozole alone or in combination with valsartan. HG-D rats developed proteinuria and had increased blood urea nitrogen and creatinine, and histopathological evidence of renal injury, including glomerular hypertrophy and mesangial expansion. Valsartan alone or in combination with letrozole reduced proteinuria, improved renal functions, and reduced diabetes-induced renal angiotensin II. Both agents ameliorated nuclear factor kappa light chain enhancer of activated B cells, interleukin 1β, interleukin 6, and tumor necrosis factor alpha levels. The combination decreased superoxide dismutase, malondialdehyde, and glutathione peroxidase levels, and prevented glomerular hypertrophy. In HG-D rats, valsartan reduced renal collagen IV and transforming growth factor-beta 1, especially when the testosterone level was corrected by letrozole. Thus, normalizing testosterone and inhibiting renal angiotensin II have a renoprotective effect against DN in HG male rats.
Collapse
Affiliation(s)
- Samy Makary
- a Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Abdo
- a Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Abdo Hassan
- b Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,c Department of Basic Sciences, Sulaiman Al-Rajhi College of Medicine, Kingdom of Saudi Arabia
| | - Mona K Tawfik
- d Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Rastrelli G, Vignozzi L, Corona G, Maggi M. Testosterone and Benign Prostatic Hyperplasia. Sex Med Rev 2019; 7:259-271. [PMID: 30803920 DOI: 10.1016/j.sxmr.2018.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) are frequent in aging. Nonetheless, their pathogenesis is largely unknown. The androgen dependence of the first phases of prostate development have inspired the historical view that higher testosterone (T) may be involved in BPH occurrence; however, recent evidence suggests a different scenario. AIM To review the available knowledge on the pathogenesis of BPH particularly concerning the role of T and the possible connections with metabolic impairments. METHODS Relevant records were retrieved by an extensive search in Medline, including the following keywords ("testosterone"[MeSH Terms] OR "testosterone"[All Fields]) AND ("prostatic hyperplasia"[MeSH Terms] OR ("prostatic"[All Fields] AND "hyperplasia"[All Fields]) OR "prostatic hyperplasia"[All Fields] OR ("benign"[All Fields] AND "prostatic"[All Fields] AND "hyperplasia"[All Fields]) OR "benign prostatic hyperplasia"[All Fields]). There were no limitations in terms of publication date or study design. MAIN OUTCOME MEASURES Preclinical and clinical studies have been reported, with special emphasis on our contribution and interpretation. RESULTS Inflammation is a key aspect of BPH development. Along with infectious agents, prostate inflammation can be triggered by metabolic stimuli, such as dyslipidemia, an important component of metabolic syndrome (MetS). Low T and hyperestrogenism frequently occur in MetS. Mounting evidence shows that low, rather than high, T and hyperestrogenism may favor prostate inflammation. Considering these data as a whole, we postulate that BPH is the result of the action of multiple factors, which reinforce their mutual detrimental effects. CONCLUSION T is not detrimental for the prostate, and treating hypogonadism could even produce relief from LUTS and limit prostatic inflammation, which generates and maintains the process leading to BPH. Rastrelli G, Vignozzi L, Corona G, et al. Testosterone and Benign Prostatic Hyperplasia. Sex Med Rev 2019;7:259-271.
Collapse
Affiliation(s)
- Giulia Rastrelli
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Giovanni Corona
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Endocrinology Unit, Medical Department, Azienda Usl Bologna Maggiore-Bellaria Hospital, Bologna, Italy
| | - Mario Maggi
- Sexual Medicine and Andrology Unit Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.
| |
Collapse
|
27
|
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF. Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 2018; 70:51-58. [PMID: 29660904 DOI: 10.3233/ch-170276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracellular calcium overload has been implicated in various pathological conditions including ischemia reperfusion injury. This study aims to explore the effect and probable mechanism of dantrolene, a ryanodine receptor and intracellular calcium antagonist, on the skeletal muscle ischemia reperfusion injury. MATERIALS AND METHODS SD rats were randomly divided into three groups: sham group which underwent anaesthesia and exposure of femoral vein, reperfusion group that received 2 h ischemia and the amount of diluent via femoral vein before 4 h reperfusion, dantrolene group that underwent 2 h ischemia and was given 2 mg/kg dantrolene via femoral vein before 4 h reperfusion. The parameters measured at the end of reperfusion included serum maleic dialdehyde (MDA), tissue myeloperoxidase (MPO) and muscle histology, as well as serum TNF-α and IL-10. RESULTS Levels of MDA, MPO and TNF-α increased in the reperfusion group, whereas the relevant expressions in the dantrolene group decreased significantly. Histological examination demonstrated significant improvements between the same both groups. IL-10 reflected the protection observed above with a significant up-regulation of expression after dantrolene administration. CONCLUSION Ryanodine receptor antagonist dantrolene exerted a significant protective effect against the inflammatory injury of skeletal muscle ischemia reperfusion. The underlying molecular mechanism is probably related to the suppression of TNF-α levels and the increment of IL-10 expression.
Collapse
Affiliation(s)
- Hai-Peng Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Qing Zheng
- Department of E.N.T, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhi-Ping Zhou
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gao-Xiong Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping-Fan Guo
- Department of Vascular Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Patil CN, Racusen LC, Reckelhoff JF. Consequences of advanced aging on renal function in chronic hyperandrogenemic female rat model: implications for aging women with polycystic ovary syndrome. Physiol Rep 2018; 5:5/20/e13461. [PMID: 29051304 PMCID: PMC5661229 DOI: 10.14814/phy2.13461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and reproductive disorder in premenopausal women, characterized by hyperandrogenemia, metabolic syndrome, and inflammation. Women who had PCOS during their reproductive years remain hyperandrogenemic after menopause. The consequence of chronic hyperandrogenemia with advanced aging has not been studied to our knowledge. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22–25 months to mimic advanced aging in hyperandrogenemic women, and tested the hypothesis that chronic exposure to hyperandrogenemia with aging has a deleterious effect on renal function. Female rats were chronically implanted with dihydrotestosterone pellets (DHT 7.5 mg/90 days) that were changed every 85 days or placebo pellets, and renal function was measured by clearance methods. Aging DHT‐treated females had a threefold higher level of DHT with significantly higher body weight, mean arterial pressure, left kidney weight, proteinuria, and kidney injury molecule‐1 (KIM‐1), than did age‐matched controls. In addition, DHT‐treated‐old females had a 60% reduction in glomerular filtration rate, 40% reduction in renal plasma flow, and significant reduction in urinary nitrate and nitrite excretion (UNOxV), an index of nitric oxide production. Morphological examination of kidneys showed that old DHT‐treated females had significant focal segmental glomerulosclerosis, global sclerosis, and interstitial fibrosis compared to controls. Thus chronic hyperandrogenemia that persists into old age in females is associated with renal injury. These data suggest that women with chronic hyperandrogenemia such as in PCOS may be at increased risk for development of chronic kidney disease with advanced age.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorraine C Racusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jane F Reckelhoff
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi .,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Choucry MA, Khalil MNA, El Awdan SA. Protective action of Crateva nurvala Buch. Ham extracts against renal ischaemia reperfusion injury in rats via antioxidant and anti-inflammatory activities. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:47-57. [PMID: 29217496 DOI: 10.1016/j.jep.2017.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crateva nurvala stem bark is commonly used in Ayruveda in treatment of many renal injuries, e.g., urinary lithiasis, diuretic and nephroprotective. However, its protective effect against renal ischaemia/reperfusion, the major cause of acute kidney injury, has never been studied. Moreover, no comprehensive chemical profiling of its extracts was recorded. AIM OF THE STUDY Assessment of the protective effect of the plant extracts against renal ischaemia/reperfusion and elucidation of the possible mechanism of action. Then, to determine its bioactive constituents using modern UPLC-HRMS technique. MATERIAL AND METHODS Unilateral ischaemia was induced by clamping the left renal artery for 1h then reperfusion for 24h. Rats were divided in 4 groups: i) sham-operated group, ii) ischaemia/reperfusion, I/R group, iii) I/R protected by previous administration of Crateva leaves extract, CLE group and iv) I/R protected by previous administration of Crateva bark extract, CBE group. At the end of reperfusion, blood samples were analyzed for renal function biomarkers. Kidneys were examined histopathologically and their homogenates were used in determining the intracellular levels of oxidative stress, inflammatory, and apoptosis markers. RESULTS Leaves and bark extracts attenuated the deleterious effects of I/R apparent in reducing LDH, creatinine and blood urea nitrogen levels. The extracts reduced the oxidative stress by replenishing the glutathione levels and Nrf2 factor levels. Moreover, extracts decreased levels of pro-inflammatory TNF-α, NF-κβ and IL-6; which ultimately resulted in reducing the pro-apoptotic caspase-3. Bark and leave extracts have quite similar chemical profile where 42 compounds of various chemical classes were identified. Flavonoids are the major class of the bioactive phytochemicals CONCLUSION: C. nurvala extracts had effectively ameliorated the deleterious effects of renal I/R by mainly counteracting oxidative stress and presumably inflammation. Consequently, it can be used as a complementary treatment with other agents. In this aspect, leaves stand as a sustainable alternative to bark. The presented chemical profiling can be used in future standardization and quality control of the drug.
Collapse
Affiliation(s)
- Mouchira A Choucry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| | - Mohammed N A Khalil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| | - Sally A El Awdan
- Pharmacology Department, National Research Centre, 33 El-Buhouth Street, Dokki 12622, Egypt.
| |
Collapse
|
30
|
Zhang Y, Wang Y, Cao WW, Ma KT, Ji W, Han ZW, Si JQ, Li L. Spectral Characteristics of Autofluorescence in Renal Tissue and Methods for Reducing Fluorescence Background in Confocal Laser Scanning Microscopy. J Fluoresc 2018; 28:561-572. [DOI: 10.1007/s10895-018-2217-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
|
31
|
Al-Tarrah K, Moiemen N, Lord JM. The influence of sex steroid hormones on the response to trauma and burn injury. BURNS & TRAUMA 2017; 5:29. [PMID: 28920065 PMCID: PMC5597997 DOI: 10.1186/s41038-017-0093-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
Abstract
Trauma and related sequelae result in disturbance of homeostatic mechanisms frequently leading to cellular dysfunction and ultimately organ and system failure. Regardless of the type and severity of injury, gender dimorphism in outcomes following trauma have been reported, with females having lower mortality than males, suggesting that sex steroid hormones (SSH) play an important role in the response of body systems to trauma. In addition, several clinical and experimental studies have demonstrated the effects of SSH on the clinical course and outcomes following injury. Animal studies have reported the ability of SSH to modulate immune, inflammatory, metabolic and organ responses following traumatic injury. This indicates that homeostatic mechanisms, via direct and indirect pathways, can be maintained by SSH at local and systemic levels and hence result in more favourable prognosis. Here, we discuss the role and mechanisms by which SSH modulates the response of the body to injury by maintaining various processes and organ functions. Such properties of sex hormones represent potential novel therapeutic strategies and further our understanding of current therapies used following injury such as oxandrolone in burn-injured patients.
Collapse
Affiliation(s)
- K Al-Tarrah
- Institute of Inflammation and Ageing, Birmingham University Medical School, B15 2TT, Birmingham, UK.,Scar Free Foundation Centre for Burns Research, University Hospital Birmingham Foundation Trust, B15 2WB, Birmingham, UK
| | - N Moiemen
- Scar Free Foundation Centre for Burns Research, University Hospital Birmingham Foundation Trust, B15 2WB, Birmingham, UK
| | - J M Lord
- Institute of Inflammation and Ageing, Birmingham University Medical School, B15 2TT, Birmingham, UK
| |
Collapse
|
32
|
Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. J Immunol Res 2017; 2017:6305439. [PMID: 28676864 PMCID: PMC5476886 DOI: 10.1155/2017/6305439] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.
Collapse
|
33
|
Li R, Fan L, Ma F, Cao Y, Gao J, Liu H, Li Y. Effect of etomidate on the oxidative stress response and levels of inflammatory factors from ischemia-reperfusion injury after tibial fracture surgery. Exp Ther Med 2017; 13:971-975. [PMID: 28450928 PMCID: PMC5403519 DOI: 10.3892/etm.2017.4037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023] Open
Abstract
The effect of etomidate on the oxidative stress response and levels of inflammatory factors resulting from ischemia-reperfusion injury of the lower extremities during tibial fracture surgery were investigated. From December 2013 to June 2015, 60 tibial fracture patients with surgical indications for open reduction and internal fixation were selected. Patients were randomly divided into the observation group and the control group. All patients were stanched by tourniquet hemostasis. Patients in the observation group were anesthetized with etomidate (3–6 mg/kg·h) + remifentanil (0.1–0.25 µg/kg/min) administered with an injection pump to maintain intraoperative sedation and analgesia anesthesia. Patients in the control group received propofol (3–6 mg/kg·h) + remifentanil (0.1–0.25 µg/kg/min). Before surgery (T0), before surgery was completed and anesthesia was stopped (T1), 24 h after surgery (T3), 48 h after surgery (T4), and 1 week after surgery (T5), serum superoxide dismutase (SOD) activity was determined with a kit, and ELISA was used to measure the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 in peripheral blood from both groups of patients. Surgery in both groups was completed smoothly. We found that serum SOD levels of patients in the observation group were significantly higher than those of the control group, while the levels of TNF-α, IL-1, and IL-6 released by neutrophils were significantly decreased after ischemia-reperfusion injury (P<0.05). Postoperative length of stay in hospital of the observation group was significantly shorter and the occurrence rate of anesthesia complications was significantly lower than in the control group (P<0.05). In conclusion, during surgery for lower limb fracture, the use of etomidate for maintaining sedation can effectively maintain serum SOD activity and inhibit the release of inflammatory factors after ischemia-reperfusion injury of the fracture, to reduce the occurrence rate of anesthesia complications after surgery.
Collapse
Affiliation(s)
- Renke Li
- Department of Anesthesiology, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Lei Fan
- Women and Infants Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Fenglei Ma
- Department of Anesthesiology, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yongyan Cao
- Department of Anesthesiology, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Junwei Gao
- Department of Anesthesiology, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Huawen Liu
- Department of Anesthesiology, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yan Li
- Department of Anesthesiology, Henan Provincial Chest Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
34
|
Filler G, Ramsaroop A, Stein R, Grant C, Marants R, So A, McIntyre C. Is Testosterone Detrimental to Renal Function? Kidney Int Rep 2016; 1:306-310. [PMID: 29318206 PMCID: PMC5720528 DOI: 10.1016/j.ekir.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Children’s Hospital at London Health Science Centre, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Correspondence: Guido Filler, MD, PhD, FRCPC, Department of Paediatrics, Children's Hospital of Western Ontario, 800 Commissioners Rd. E., London, Ontario, Canada N6A 5W9.Department of Paediatrics, Children's Hospital of Western Ontario800 Commissioners Rd. E., LondonOntarioCanada N6A 5W9
| | - Amanda Ramsaroop
- Department of Paediatrics, Children’s Hospital at London Health Science Centre, London, Ontario, Canada
| | - Robert Stein
- Department of Paediatrics, Children’s Hospital at London Health Science Centre, London, Ontario, Canada
| | - Claire Grant
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Raanan Marants
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Aaron So
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Christopher McIntyre
- Department of Paediatrics, Children’s Hospital at London Health Science Centre, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|