1
|
Xu P, Darkner S, Sosnovtseva O, Holstein-Rathlou NH. Toward a full-scale model of renal hemodynamics using a reconstructed vascular tree. Am J Physiol Renal Physiol 2025; 328:F702-F723. [PMID: 40099641 DOI: 10.1152/ajprenal.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The kidney's vascular network stands out because 1) the microcirculation not only supplies the tissues with oxygen and nutrients but also supports glomerular filtration in each nephron, 2) it contains the tubuloglomerular feedback, a mechanism that contributes to renal blood flow autoregulation and is unique to the kidney, and 3) the topology of the renal arterial network influences signaling along the vessels mediating nephron-nephron interactions. We have developed a full-scale vascular model of the rat kidney based on a reconstructed vascular network combined with a nephron model that includes glomerular filtration, tubular reabsorption, and autoregulation of afferent arteriolar resistances. The model evaluates the steady-state operating conditions of approximately 30,000 nephrons in a rat kidney and the efficiency of autoregulation under normal and pathological conditions. The simulation results show how the regulated afferent arteriolar resistances stabilize blood flow in the reconstructed full-scale renal vascular network. It is concluded that by using a reconstructed renal vascular tree, it is possible to develop a realistic full-scale model of the regulation of renal hemodynamics as a first step toward creating a virtual kidney.NEW & NOTEWORTHY We have developed the first full-scale steady-state model integrating a realistic vascular network topology of the kidney and its hemodynamic regulatory mechanisms. The vascular network is combined with approximately 30,000 nephron models that include glomerular filtration, tubular reabsorption, and autoregulation of the afferent arteriolar resistances. By simulating the adaptive properties of the renal microcirculation at steady state, our approach demonstrates the feasibility of utilizing a reconstructed vascular network for comprehensive modeling of renal function.
Collapse
Affiliation(s)
- Peidi Xu
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Image Analysis Core Facility, Danish Bioimaging Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Baldelomar EJ, Morozov D, Wilson LD, Eldeniz C, An H, Charlton JR, Bauer AQ, Keilholz SD, Hulbert ML, Bennett KM. Resting-state MRI reveals spontaneous physiological fluctuations in the kidney and tracks diabetic nephropathy in rats. Am J Physiol Renal Physiol 2024; 327:F113-F127. [PMID: 38660712 PMCID: PMC11390131 DOI: 10.1152/ajprenal.00423.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.
Collapse
Affiliation(s)
- Edwin J Baldelomar
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Leslie D Wilson
- Division of Comparative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States
| | - Adam Q Bauer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Shella D Keilholz
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Monica L Hulbert
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine in St. Louis, Missouri, United States
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
3
|
Ramoni D, Carbone F, Montecucco F. Ultrasound unveiling: Decoding venous congestion in heart failure for precision management of fluid status. World J Cardiol 2024; 16:306-309. [PMID: 38993587 PMCID: PMC11235209 DOI: 10.4330/wjc.v16.i6.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
This editorial discusses the manuscript by Di Maria et al, published in the recent issue of the World Journal of Cardiology. We here focus on the still elusive pathophysiological mechanisms underlying cardio-renal syndrome (CRS), despite its high prevalence and the substantial worsening of both kidney function and heart failure. While the measure of right atrial pressure through right cardiac catheterization remains the most accurate albeit invasive and costly procedure, integrating bedside ultrasound into diagnostic protocols may substantially enhance the staging of venous congestion and guide therapeutic decisions. In particular, with the assessment of Doppler patterns across multiple venous districts, the Venous Excess Ultrasound (VExUS) score improves the management of fluid overload and provides insight into the underlying factors contributing to cardio-renal interactions. Integrating specific echocardiographic parameters, particularly those concerning the right heart, may thus improve the VExUS score sensitivity, offering perspective into the nuanced comprehension of cardio-renal dynamics. A multidisciplinary approach that consistently incorporates the use of ultrasound is emerging as a promising advance in the understanding and management of CRS.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy.
| |
Collapse
|
4
|
Lee B, Postnov DD, Sørensen CM, Sosnovtseva O. In vivo mapping of hemodynamic responses mediated by tubuloglomerular feedback in hypertensive kidneys. Sci Rep 2023; 13:21954. [PMID: 38081921 PMCID: PMC10713540 DOI: 10.1038/s41598-023-49327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
The kidney has a sophisticated vascular structure that performs the unique function of filtering blood and managing blood pressure. Tubuloglomerular feedback is an intra-nephron negative feedback mechanism stabilizing single-nephron blood flow, glomerular filtration rate, and tubular flow rate, which is exhibited as self-sustained oscillations in single-nephron blood flow. We report the application of multi-scale laser speckle imaging to monitor global blood flow changes across the kidney surface (low zoom) and local changes in individual microvessels (high zoom) in normotensive and spontaneously hypertensive rats in vivo. We reveal significant differences in the parameters of TGF-mediated hemodynamics and patterns of synchronization. Furthermore, systemic infusion of a glucagon-like-peptide-1 receptor agonist, a potential renoprotective agent, induces vasodilation in both groups but only alters the magnitude of the TGF in Sprague Dawleys, although the underlying mechanisms remain unclear.
Collapse
Affiliation(s)
- Blaire Lee
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Dmitry D Postnov
- CFIN Department of Clinical Medicine, Aarhus University, 1710, Aarhus, Denmark
| | - Charlotte M Sørensen
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark
| | - Olga Sosnovtseva
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
5
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 2023; 58:2338-2358.e5. [PMID: 37673062 PMCID: PMC10873092 DOI: 10.1016/j.devcel.2023.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Miao
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ingileif B Hallgrimsdottir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Goligorsky MS. Glomerular microcirculation: Implications for diabetes, preeclampsia, and kidney injury. Acta Physiol (Oxf) 2023; 239:e14048. [PMID: 37688412 PMCID: PMC10615779 DOI: 10.1111/apha.14048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
This review outlines the features of tandem regulation of glomerular microcirculation by autoregulatory mechanisms and intraglomerular redistribution of blood flow. Multiple points of cooperation exist between autoregulatory and distributional mechanisms. Mutual interactions between myogenic and tubuloglomerular feedback (TGF) mechanisms regulating the inflow are briefly discussed. In addition to this, TGF operation involving purinergic, autocoid, and NO signaling affects, however, not only afferent arteriolar tone, but mesangial cell tone as well. The latter reversibly reconfigures the distribution of blood flow between the shorter and longer pathways in the glomerular tuft. I advance a hypothesis that blood flow in these pathways spontaneously alternates, and mesangial cell tonicity serves as a rheostatic shift between them. Furthermore, humoral messengers from macula densa cells, themselves dependent on myogenic mechanisms, fine-tune the secretion of renin and, subsequently, the local, intrarenal generation of angiotensin II, which, in turn, provides additional vasomotor signaling to glomerular capillaries through changing the tone of mesangial cells. This complex regulatory network may partially explain the phenomenon of renal functional reserve, as well as suggest implications for changes in renal function during pregnancy, early diabetes mellitus, and acute kidney injury.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College at the Touro University, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College at the Touro University, Valhalla, New York, USA
- Department of Physiology, New York Medical College at the Touro University, Valhalla, New York, USA
| |
Collapse
|
8
|
Marsh DJ, Wexler AS, Holstein-Rathlou NH. Interacting information streams on the nephron arterial network. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1254964. [PMID: 37928058 PMCID: PMC10620968 DOI: 10.3389/fnetp.2023.1254964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Blood flow and glomerular filtration in the kidney are regulated by two mechanisms acting on the afferent arteriole of each nephron. The two mechanisms operate as limit cycle oscillators, each responding to a different signal. The myogenic mechanism is sensitive to a transmural pressure difference across the wall of the arteriole, and tubuloglomerular feedback (TGF) responds to the NaCl concentration in tubular fluid flowing into the nephron's distal tubule,. The two mechanisms interact with each other, synchronize, cause oscillations in tubular flow and pressure, and form a bimodal electrical signal that propagates into the arterial network. The electrical signal enables nephrons adjacent to each other in the arterial network to synchronize, but non-adjacent nephrons do not synchronize. The arteries supplying the nephrons have the morphologic characteristics of a rooted tree network, with 3 motifs characterizing nephron distribution. We developed a model of 10 nephrons and their afferent arterioles in an arterial network that reproduced these structural characteristics, with half of its components on the renal surface, where experimental data suitable for model validation is available, and the other half below the surface, from which no experimental data has been reported. The model simulated several interactions: TGF-myogenic in each nephron with TGF modulating amplitude and frequency of the myogenic oscillation; adjacent nephron-nephron with strong coupling; non-adjacent nephron-nephron, with weak coupling because of electrical signal transmission through electrically conductive arterial walls; and coupling involving arterial nodal pressure at the ends of each arterial segment, and between arterial nodes and the afferent arterioles originating at the nodes. The model predicted full synchronization between adjacent nephrons pairs and partial synchronization among weakly coupled nephrons, reproducing experimental findings. The model also predicted aperiodic fluctuations of tubular and arterial pressures lasting longer than TGF oscillations in nephrons, again confirming experimental observations. The model did not predict complete synchronization of all nephrons.
Collapse
Affiliation(s)
- Donald J. Marsh
- Department of Medical Sciences, Division of Medicine and Biological Sciences, Brown University, Providence, RI, United States
| | - Anthony S. Wexler
- Departments of Biomedical Engineering, and Mechanical and Aerospace Engineering, University of California Davis, Davis, CA, United States
| | | |
Collapse
|
9
|
More HL, Braam B, Cupples WA. Reduced tubuloglomerular feedback activity and absence of its synchronization in a connexin40 knockout rat. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1208303. [PMID: 37705697 PMCID: PMC10495682 DOI: 10.3389/fnetp.2023.1208303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Introduction: Tubuloglomerular feedback (TGF) is the negative feedback component of renal blood flow (RBF) autoregulation. Neighbouring nephrons often exhibit spontaneous TGF oscillation and synchronization mediated by endothelial communication, largely via connexin40 (Cx40). Methods: We had a knockout (KO) rat made that lacks Cx40. One base pair was altered to create a stop codon in exon 1 of Gja5, the gene that encodes Cx40 (the strain is WKY-Gja55em1Mcwi). Blood pressure (BP)-RBF transfer functions probed RBF dynamics and laser speckle imaging interrogated the dynamics of multiple efferent arterioles that reach the surface (star vessels). Results: The distribution of wild type (WT), heterozygote, and KO pups at weaning approximated the Mendelian ratio of 1:2:1; growth did not differ among the three strains. The KO rats were hypertensive. BP-RBF transfer functions showed low gain of the myogenic mechanism and a smaller TGF resonance peak in KO than in WT rats. Laser speckle imaging showed that myogenic mechanism had higher frequency in KO than in WT rats, but similar maximum spectral power. In contrast, the TGF frequency was similar while peak power of its oscillation was much smaller in KO than in WT rats. In WT rats, plots of instantaneous TGF phase revealed BP-independent TGF synchronization among star vessels. The synchronization could be both prolonged and widespread. In KO rats TGF synchronization was not seen, although BP transients could elicit short-lived TGF entrainment. Discussion: Despite the reduced TGF spectral power in KO rats, there was sufficient TGF gain to induce oscillations and therefore enough gain to be effective locally. We conclude that failure to synchronize is dependent, at least in part, on impaired conducted vasomotor responses.
Collapse
Affiliation(s)
- Heather L. More
- Department of Biomedical Physiology and Kinesiology, Faculty of Science Simon Fraser University, Burnaby, BC, Canada
| | - Branko Braam
- Division of Nephrology, Department of Medicine, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - William A. Cupples
- Department of Biomedical Physiology and Kinesiology, Faculty of Science Simon Fraser University, Burnaby, BC, Canada
- Division of Nephrology, Department of Medicine, Edmonton, AB, Canada
| |
Collapse
|
10
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539585. [PMID: 37205355 PMCID: PMC10187285 DOI: 10.1101/2023.05.06.539585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
11
|
Xu P, Holstein-Rathlou NH, Søgaard SB, Gundlach C, Sørensen CM, Erleben K, Sosnovtseva O, Darkner S. A hybrid approach to full-scale reconstruction of renal arterial network. Sci Rep 2023; 13:7569. [PMID: 37160979 PMCID: PMC10169837 DOI: 10.1038/s41598-023-34739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
The renal vasculature, acting as a resource distribution network, plays an important role in both the physiology and pathophysiology of the kidney. However, no imaging techniques allow an assessment of the structure and function of the renal vasculature due to limited spatial and temporal resolution. To develop realistic computer simulations of renal function, and to develop new image-based diagnostic methods based on artificial intelligence, it is necessary to have a realistic full-scale model of the renal vasculature. We propose a hybrid framework to build subject-specific models of the renal vascular network by using semi-automated segmentation of large arteries and estimation of cortex area from a micro-CT scan as a starting point, and by adopting the Global Constructive Optimization algorithm for generating smaller vessels. Our results show a close agreement between the reconstructed vasculature and existing anatomical data obtained from a rat kidney with respect to morphometric and hemodynamic parameters.
Collapse
Affiliation(s)
- Peidi Xu
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark.
| | | | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Copenhagen, 2800, Denmark
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Kenny Erleben
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
| |
Collapse
|
12
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
13
|
Goligorsky MS. Emerging Insights into Glomerular Vascular Pole and Microcirculation. J Am Soc Nephrol 2022; 33:1641-1648. [PMID: 35853715 PMCID: PMC9529196 DOI: 10.1681/asn.2022030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, New York
| |
Collapse
|
14
|
Goligorsky MS. OSCILLATORS IN THE MICROVASCULATURE - GLYCOCALYX AND BEYOND. Am J Physiol Cell Physiol 2022; 323:C432-C438. [PMID: 35759436 PMCID: PMC9359649 DOI: 10.1152/ajpcell.00170.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The growing recognition of abundance of oscillating functions in biological systems has motivated this brief overview which narrows down on the microvasculature. Specifically, it encompasses self-sustained oscillations of blood flow, hematocrit and viscosity at bifurcations; their effects on the oscillations of endothelial glycocalyx, mechanotransduction and its termination to prime endothelial cells for the subsequent mechanical signaling event; oscillating affinity of hyaluronan-CD44 binding domain; spontaneous contractility of actomyosin complexes in the cortical actin web, its effects on the tension of the plasma membrane; reversible effects of sirtuin-1 on endothelial glycocalyx; and effects of plasma membrane tension on endo-and exocytosis. Some potential interactions between those oscillators - their coupling - are discussed together with their transition into chaotic movements. Future in-depth understanding of the oscillatory activities in the microvasculature could serve as a guide to its chronotherapy under pathological conditions.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College at the Touro University, Valhalla, NY
| |
Collapse
|
15
|
Postnov D, Marsh DJ, Cupples WA, Holstein-Rathlou NH, Sosnovtseva O. Synchronization in renal microcirculation unveiled with high-resolution blood flow imaging. eLife 2022; 11:75284. [PMID: 35522041 PMCID: PMC9113743 DOI: 10.7554/elife.75284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Internephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronise over short distances, and potentially form large synchronised clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed. In the present study, we introduce an approach for high-resolution laser speckle imaging of renal blood flow and apply it to estimate frequency and phase differences in rat kidney microcirculation under different conditions. The analysis unveiled spatial and temporal evolution of synchronised blood flow clusters of various sizes, including the formation of large (>90 vessels) long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback mechanism. Administration of vasoactive agents caused significant changes in the synchronisation patterns and, thus, in nephrons' co-operative dynamics. Specifically, infusion of vasoconstrictor angiotensin II promoted stronger synchronisation, while acetylcholine caused complete desynchronisation. The results confirm the presence of the local synchronisation in the renal microcirculatory blood flow and that it changes depending on the condition of the vascular network and the blood pressure, which will have further implications for the role of such synchronisation in pathologies development.
Collapse
Affiliation(s)
- Dmitry Postnov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donald J Marsh
- Division of Biology and Medicine, Brown University, Rhode Island, United States
| | - Will A Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | | | - Olga Sosnovtseva
- Biomedical Sciences Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Lee B, Sosnovtseva O, Sørensen CM, Postnov DD. Multi-scale laser speckle contrast imaging of microcirculatory vasoreactivity. BIOMEDICAL OPTICS EXPRESS 2022; 13:2312-2322. [PMID: 35519248 PMCID: PMC9045893 DOI: 10.1364/boe.451014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Laser speckle contrast imaging is a robust and versatile blood flow imaging tool in basic and clinical research for its relatively simple construction and ease of customization. One of its key features is the scalability of the imaged field of view. With minimal changes to the system or analysis, laser speckle contrast imaging allows for high-resolution blood flow imaging through cranial windows or low-resolution perfusion visualization of perfusion over large areas, e.g. in human skin. We further utilize this feature and introduce a multi-scale laser speckle contrast imaging system, which we apply to study vasoreactivity in renal microcirculation. We combine high resolution (small field of view) to segment blood flow in individual vessels with low resolution (large field of view) to monitor global blood flow changes across the renal surface. Furthermore, we compare their performance when analyzing blood flow dynamics potentially associated with a single nephron and show that the previously published approaches, based on low-zoom imaging alone, provide inaccurate results in such applications.
Collapse
Affiliation(s)
- Blaire Lee
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Theodorou C, Leatherby R, Dhanda R. Function of the nephron and the formation of urine. ANAESTHESIA & INTENSIVE CARE MEDICINE 2021. [DOI: 10.1016/j.mpaic.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zehra T, Cupples WA, Braam B. Tubuloglomerular Feedback Synchronization in Nephrovascular Networks. J Am Soc Nephrol 2021; 32:1293-1304. [PMID: 33833078 PMCID: PMC8259654 DOI: 10.1681/asn.2020040423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To perform their functions, the kidneys maintain stable blood perfusion in the face of fluctuations in systemic BP. This is done through autoregulation of blood flow by the generic myogenic response and the kidney-specific tubuloglomerular feedback (TGF) mechanism. The central theme of this paper is that, to achieve autoregulation, nephrons do not work as single units to manage their individual blood flows, but rather communicate electrically over long distances to other nephrons via the vascular tree. Accordingly, we define the nephrovascular unit (NVU) to be a structure consisting of the nephron, glomerulus, afferent arteriole, and efferent arteriole. We discuss features that require and enable distributed autoregulation mediated by TGF across the kidney. These features include the highly variable topology of the renal vasculature which creates variability in circulation and the potential for mismatch between tubular oxygen demand and delivery; the self-sustained oscillations in each NVU arising from the autoregulatory mechanisms; and the presence of extensive gap junctions formed by connexins and their properties that enable long-distance transmission of TGF signals. The existence of TGF synchronization across the renal microvascular network enables an understanding of how NVUs optimize oxygenation-perfusion matching while preventing transmission of high systemic pressure to the glomeruli, which could lead to progressive glomerular and vascular injury.
Collapse
Affiliation(s)
- Tayyaba Zehra
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - William A. Cupples
- Department of Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Branko Braam
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F443-F454. [DOI: 10.1152/ajprenal.00280.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and strategies based on this blood sugar-reducing and appetite-suppressing hormone are used to treat obesity and type 2 diabetes. However, the GLP-1 receptor (GLP-1R) is also present in the kidney, where it influences renal function. The effect of GLP-1 on the kidney varies between humans and rodents. The effect of GLP-1 on kidney function also seems to vary depending on its concentration and the physiological or pathological state of the kidney. In studies with rodents or humans, acute infusion of pharmacological doses of GLP-1 stimulates natriuresis and diuresis. However, the effect on the renal vasculature is less clear. In rodents, GLP-1 infusion increases renal plasma flow and glomerular filtration rate, suggesting renal vasodilation. In humans, only a subset of the study participants exhibits increased renal plasma flow and glomerular filtration rate. Differential status of kidney function and changes in renal vascular resistance of the preglomerular arterioles may account for the different responses of the human study participants. Because renal function in patients with type 2 diabetes is already at risk or compromised, understanding the effects of GLP-1R activation on kidney function in these patients is particularly important. This review examines the distribution of GLP-1R in the kidney and the effects elicited by GLP-1 or GLP-1R agonists. By integrating results from acute and chronic studies in healthy individuals and patients with type 2 diabetes along with those from rodent studies, we provide insight into how GLP-1R activation affects renal function and autoregulation.
Collapse
Affiliation(s)
- Aleksander Vauvert R. Hviid
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|