1
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
2
|
Inhibition of nNOS in the paraventricular nucleus of hypothalamus decreases exercise-induced hyperthermia. Brain Res Bull 2021; 177:64-72. [PMID: 34536522 DOI: 10.1016/j.brainresbull.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.
Collapse
|
3
|
Drummond LR, Campos HO, de Andrade Lima PM, da Fonseca CG, Kunstetter AC, Rodrigues QT, Szawka RE, Natali AJ, Prímola-Gomes TN, Wanner SP, Coimbra CC. Impaired thermoregulation in spontaneously hypertensive rats during physical exercise is related to reduced hypothalamic neuronal activation. Pflugers Arch 2020; 472:1757-1768. [PMID: 33040159 DOI: 10.1007/s00424-020-02474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
This study aimed to evaluate the physical exercise-induced neuronal activation in brain nuclei controlling thermoregulatory responses in hypertensive and normotensive rats. Sixteen-week-old male normotensive Wistar rats (NWRs) and spontaneously hypertensive rats (SHRs) were implanted with an abdominal temperature sensor. After recovery, the animals were subjected to a constant-speed treadmill running (at 60% of the maximum aerobic speed) for 30 min at 25 °C. Core (Tcore) and tail-skin (Tskin) temperatures were measured every minute during exercise. Ninety minutes after the exercise, the rats were euthanized, and their brains were collected to determine the c-Fos protein expression in the following areas that modulate thermoregulatory responses: medial preoptic area (mPOA), paraventricular hypothalamic nucleus (PVN), and supraoptic nucleus (SON). During treadmill running, the SHR group exhibited a greater increase in Tcore and an augmented threshold for cutaneous heat loss relative to the NWR group. In addition, the SHRs showed reduced neuronal activation in the mPOA (< 49.7%) and PVN (< 44.2%), but not in the SON. The lower exercise-induced activation in the mPOA and PVN in hypertensive rats was strongly related to the delayed onset of cutaneous heat loss. We conclude that the enhanced exercise-induced hyperthermia in hypertensive rats can be partially explained by a delayed cutaneous heat loss, which is, in turn, associated with reduced activation of brain areas modulating thermoregulatory responses.
Collapse
Affiliation(s)
- Lucas Rios Drummond
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil.
| | - Helton Oliveira Campos
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Marcelo de Andrade Lima
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Cletiana Gonçalves da Fonseca
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Quezia Teixeira Rodrigues
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Antônio José Natali
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
4
|
Lima PMA, Campos HO, Fóscolo DRC, Szawka RE, Wanner SP, Coimbra CC. The time-course of thermoregulatory responses during treadmill running is associated with running duration-dependent hypothalamic neuronal activation in rats. Brain Struct Funct 2019; 224:2775-2786. [DOI: 10.1007/s00429-019-01933-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
|
5
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Organs Blood Flow during Elevation of Body Temperature in Sevoflurane Anesthetized Rats. Anesthesiol Res Pract 2017; 2017:6182350. [PMID: 28659976 PMCID: PMC5474235 DOI: 10.1155/2017/6182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/26/2017] [Accepted: 05/14/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to investigate how elevation of body temperature changes organs blood flow during sevoflurane anesthesia. We conducted in vivo research on 14 male Wistar rats to monitor pulse rate and arterial blood pressure and measure hepatic, small intestinal, renal, and descending aortic blood flow using a laser Doppler blood flowmeter. We assessed the changes in organ blood flow, pulse rate, and arterial blood pressure during elevation of the rats' body temperatures up to 41.5°C under anesthesia with 2.0% or 3.0% sevoflurane. We concluded that elevation of body temperature up to 39.5°C does not change hepatic, small intestinal, and renal blood flow during 2.0 and 3.0% sevoflurane anesthesia.
Collapse
|
7
|
Feetham CH, Nunn N, Barrett-Jolley R. The depressor response to intracerebroventricular hypotonic saline is sensitive to TRPV4 antagonist RN1734. Front Pharmacol 2015; 6:83. [PMID: 25954200 PMCID: PMC4407506 DOI: 10.3389/fphar.2015.00083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN), is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4) channel in this homeostatic behavior. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV) application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270 mOsmol artificial cerebrospinal fluid (ACSF) decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300 mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Claire H Feetham
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| | - Nicolas Nunn
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| |
Collapse
|
8
|
Lima PM, Santiago HP, Szawka RE, Coimbra CC. Central blockade of nitric oxide transmission impairs exercise-induced neuronal activation in the PVN and reduces physical performance. Brain Res Bull 2014; 108:80-7. [DOI: 10.1016/j.brainresbull.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022]
|
9
|
Leite LHR, Zheng H, Coimbra CC, Patel KP. Contribution of the paraventricular nucleus in autonomic adjustments to heat stress. Exp Biol Med (Maywood) 2012; 237:570-7. [PMID: 22619372 DOI: 10.1258/ebm.2011.011286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We assessed the contribution of the paraventricular nucleus (PVN) in the heat stress-mediated changes in sympathetic nerve activity and blood flow redistribution from the core to the skin surface. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), and body and tail temperatures were recorded in anesthetized rats after bilateral microinjection of cerebrospinal fluid (CSF), lidocaine or NG-monomethyl-L-arginine (L-NMMA) into the PVN during heat stress. Heat stress was induced by a graded increase in the temperature of a heating pad for 30 min. Heat stimulus after blockade of the PVN with lidocaine resulted in a blunted RSNA response (ΔRSNA: 117.6 ± 17.0% versus 11.3 ± 7.3%), as well as blunted MAP and HR (ΔMAP: 22 ± 2 versus -0.04 ± 7.2 mmHg; ΔHR: 93.4 ± 9.3 versus 43.4 ± 18.8 bpm). Body temperature threshold for tail vasodilation was unaffected by lidocaine treatment. The increase in RSNA, MAP and HR due to heat stress in L-NMMA-treated rats reached similar levels as CSF-treated control rats. However, a higher body temperature threshold for tail vasodilation was observed after L-NMMA injection (37.3 ± 0.1 versus 37.8 ± 0.2 °C). In conclusion, an intact PVN contributes to an increase in renal sympathetic activity provoked by heat stress, resulting in cardiovascular adjustments that influence core blood redistribution to the periphery. Furthermore, during heat stress, the effect of the PVN on cutaneous vasodilation is dependent on a nitric oxide mechanism.
Collapse
Affiliation(s)
- Laura H R Leite
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
10
|
Dzenda T, Ayo JO, Lakpini CA, Adelaiye AB. Diurnal, seasonal and sex variations in rectal temperature of African giant rats (Cricetomys gambianus, Waterhouse). J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nunn N, Womack M, Dart C, Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr Neuropharmacol 2011; 9:262-77. [PMID: 22131936 PMCID: PMC3131718 DOI: 10.2174/157015911795596531] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 12/16/2022] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function high-lights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control.
Collapse
Affiliation(s)
| | | | | | - Richard Barrett-Jolley
- Centre for Integrative Mammalian Biology, University of Liverpool, Brownlow Hill & Crown St. Liverpool, L69 7ZJ, UK
| |
Collapse
|
12
|
Chen F, Liu F, Badoer E. AT1 receptors in the paraventricular nucleus mediate the hyperthermia-induced reflex reduction of renal blood flow in rats. Am J Physiol Regul Integr Comp Physiol 2010; 300:R479-85. [PMID: 21123758 DOI: 10.1152/ajpregu.00604.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing body core temperature reflexly decreases renal blood flow (RBF), and the hypothalamic paraventricular nucleus (PVN) plays an essential role in this response. ANG II in the brain is involved in the cardiovascular responses to hyperthermia, and ANG II receptors are highly concentrated in the PVN. The present study investigated whether ANG II in the PVN contributes to the cardiovascular responses elicited by hyperthermia. Rats anesthetized with urethane (1-1.4 g/kg iv) were microinjected bilaterally into the PVN (100 nl/side) with saline (n = 5) or losartan (1 nmol/100 nl) (n = 7), an AT1 receptor antagonist. Body core temperature was then elevated from 37°C to 41°C and blood pressure (BP), heart rate (HR), RBF, and renal vascular conductance (RVC) were monitored. In separate groups losartan (n = 4) or saline (n = 4) was microinjected into the PVN, but body core temperature was not elevated. Increasing body core temperature in control rats elicited significant decreases in RBF (-48 ± 5% from a resting level of 14.3 ± 1.4 ml/min) and MVC (-40 ± 4% from a resting level of 0.128 ± 0.013 ml/min·mmHg), and these effects were entirely prevented by pretreatment with losartan. In rats in which body core temperature was not altered, losartan microinjected into the PVN had no significant effects on these variables. The results suggest that endogenous ANG II acts on AT1 receptors in the PVN to mediate the reduction in RBF induced by hyperthermia.
Collapse
Affiliation(s)
- Feng Chen
- School of Medical Sciences, Royal Melbourne Institute of Technology University, P.O. Box 71, Bundoora 3083, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
13
|
Sinoaortic denervation prevents enhanced heat loss induced by central cholinergic stimulation during physical exercise. Brain Res 2010; 1366:120-8. [DOI: 10.1016/j.brainres.2010.09.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
|
14
|
Chen F, Wang Y, Lee Cham J, Badoer E. Inhibition of nitric oxide synthase in the paraventricular nucleus prevents the hyperthermia-induced reduction of mesenteric blood flow in rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R596-602. [DOI: 10.1152/ajpregu.00003.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing body core temperature reflexly decreases mesenteric blood flow (MBF), and the hypothalamic paraventricular nucleus (PVN) plays an essential role in this response. Nitric oxide (NO) is involved in temperature regulation and is concentrated within the PVN. The present study investigated whether NO in the PVN contributes to the cardiovascular responses elicited by hyperthermia. Anesthetized rats were microinjected bilaterally in the PVN (100 nl/side) with saline or NG-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor (100 or 200 nmol/100 nl) ( n = 5/group). Body core temperature was then elevated from 37°C to 39°C, and blood pressure (BP), heart rate (HR), MBF, and mesenteric vascular conductance (MVC) were monitored. In separate groups, l-NAME (200 nmol) ( n = 5) or saline ( n = 5) was microinjected in the PVN, but body core temperature was not elevated. In control rats, increasing body core temperature resulted in no marked change of BP but an increase in HR and significant decreases in MBF (15%) and MVC. Pretreatment with 100 nmol l-NAME did not affect the responses. In contrast, 200 nmol l-NAME prevented the normal reduction in MBF and MVC but did not significantly affect the BP and HR responses. In rats in which body core temperature was not increased, l-NAME reduced MBF by 19%. The present results suggest that endogenous NO in the PVN is important in mediating the reduction of MBF induced by hyperthermia. In the absence of hyperthermia, however, endogenous NO in the PVN may play a role in maintaining mesenteric vasodilation.
Collapse
Affiliation(s)
- Feng Chen
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Yuliang Wang
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Joo Lee Cham
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Emilio Badoer
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Badoer E. Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity and blood flow during hyperthermia and in heart failure. Am J Physiol Renal Physiol 2010; 298:F839-46. [PMID: 20147365 DOI: 10.1152/ajprenal.00734.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic paraventricular nucleus is a key integrative area in the brain involved in influencing sympathetic nerve activity and in the release of hormones or releasing factors that contribute to regulating body fluid homeostasis and endocrine function. The endocrine and hormonal regulatory function of the paraventricular nucleus is well studied, but the regulation of sympathetic nerve activity and blood flow by this region is less clear. Here we review the critical role of the paraventricular nucleus in regulating renal blood blow during hyperthermia and the evidence pointing to an important pathophysiological role of the paraventricular nucleus in the elevated renal sympathetic nerve activity that is a characteristic of heart failure.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora 3083, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Chen F, Cham JL, Badoer E. High-fat feeding alters the cardiovascular role of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2009; 298:R799-807. [PMID: 20042687 DOI: 10.1152/ajpregu.00558.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased sympathetic nerve activity is associated with obesity-related hypertension, but the underlying central neural mechanisms are not clear. We examined the role of the hypothalamic paraventricular nucleus (PVN) in the regulation of sympathetic nerve activity in rats fed a normal chow diet (controls) and rats fed a high-fat diet (36% fat) over 12 wk. The effects on blood pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) induced by microinjection of the GABA(A) receptor agonist muscimol or the antagonist bicuculline were monitored in anesthetized rats. Body weight of rats fed the high-fat diet was not significantly different from controls, but a significant 80% increase in epididymal fat mass, significantly elevated fasting blood glucose, and significantly impaired glucose tolerance were observed in rats fed the high-fat diet. Resting blood pressure and heart rate were not significantly different between rats fed the high-fat diet and controls. Muscimol microinjected into the PVN elicited a greater reduction of blood pressure and LSNA in rats fed the high-fat diet than controls: -14 +/- 6 vs. -7 +/- 2 mmHg and -35 +/- 6 vs. -10 +/- 9% (P < 0.05). Microinjection of bicuculline into the PVN increased blood pressure and LSNA, but the responses were similar in rats fed the high-fat diet and controls. In conclusion, the role of the paraventricular nucleus in cardiovascular regulation can be altered by a diet high in fat, even when hypertension and obesity are absent.
Collapse
Affiliation(s)
- Feng Chen
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Victoria, Australia
| | | | | |
Collapse
|