1
|
Wang Y, Chen Z, Liu Q, Lv Y. LncTCONS_00058568 is involved in the pathophysiologic processes mediated by P2X7R in the lower thoracic spinal cord after acute kidney injury. FASEB J 2024; 38:e23563. [PMID: 38498358 DOI: 10.1096/fj.202301622rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Acute kidney injury (AKI), a prevalent clinical syndrome, involves the participation of the nervous system in neuroimmune regulation. However, the intricate molecular mechanism that governs renal function regulation by the central nervous system (CNS) is complex and remains incompletely understood. In the present study, we found that the upregulated expression of lncTCONS_00058568 in lower thoracic spinal cord significantly ameliorated AKI-induced renal tissue injury, kidney morphology, inflammation and apoptosis, and suppressed renal sympathetic nerve activity. Mechanistically, the purinergic ionotropic P2X7 receptor (P2X7R) was overexpressed in AKI rats, whereas lncTCONS_00058568 was able to suppress the upregulation of P2X7R. In addition, RNA sequencing data revealed differentially expressed genes associated with nervous system inflammatory responses after lncTCONS_00058568 was overexpressed in AKI rats. Finally, the overexpression of lncTCONS_00058568 inhibited the activation of PI3K/Akt and NF-κB signaling pathways in spinal cord. Taken together, the results from the present study show that lncTCONS_00058568 overexpression prevented renal injury probably by inhibiting sympathetic nerve activity mediated by P2X7R in the lower spinal cord subsequent to I/R-AKI.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zeng M, Xu M, Li X, Li J, Liu Y. PAD4 silencing inhibits inflammation whilst promoting trophoblast cell invasion and migration by inactivating the NEMO/NF‑κB pathway. Exp Ther Med 2022; 24:568. [PMID: 35978928 PMCID: PMC9366263 DOI: 10.3892/etm.2022.11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Preeclampsia (PE), presenting with onset hypertension and proteinuria, is a pregnancy-specific disorder that can result in maternal and fetal morbidity and mortality. Insufficient trophoblast invasion and migration has been considered to be an important cause of this disease. The present study aimed to investigate the role of peptidyl arginine deiminase 4 (PAD4), whose knockdown has been previously indicated to reduce inflammation and susceptibility to pregnancy loss in mice, in the development of PE in vitro. Lipopolysaccharide (LPS) was used to treat a human trophoblast cell line (HTR8/SVneo). After PAD4 silencing via transfection with short hairpin RNA against PAD4, the concentrations of inflammatory factors IL-6, IL-12 and monocyte chemoattractant protein (MCP)-1 were measured using ELISA. Cell viability was also measured using Cell Counting Kit-8 assay. HTR8/SVneo cell invasion and migration were detected using Transwell and wound healing assays, respectively. Western blotting was used to measure the expression of citrullinated NF-κB essential modulator (NEMO) and nuclear NF-κB p65 protein levels. TNF-α was applied for evaluating the potential regulatory effects of PAD4 on NF-κB in LPS-stimulated HTR8/SVneo cells. LPS increased the levels of IL-6, IL-12 and MCP-1 and reduced the migration and invasion of HTR8/SVneo cells. PAD4-knockdown was found to markedly reduce the levels of IL-6, IL-12 and MCP-1 secretion. HTR8/SVneo cell invasion and migration was also significantly elevated after PAD4 silencing following LPS exposure. In addition, LPS stimulation notably upregulated the protein levels of citrullinated NEMO and nuclear NF-κB p65, which was restored by PAD4 knockdown. Furthermore, TNF-α treatment partially counteracted the effects of PAD4 knockdown on the secretion of IL-6, MCP-1 and IL-12, which are markers of inflammation, and invasion and migration in LPS-induced HTR8/SVneo cells. To conclude, these results suggest that PAD4 silencing can suppress inflammation whilst promoting invasion and migration by trophoblast cells through inhibiting the NEMO/NF-κB pathway. These findings furthered the understanding in the complex molecular mechanism that can trigger PE and provide a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Min Zeng
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Minjuan Xu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Xiafang Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Junying Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Yuanyuan Liu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| |
Collapse
|
3
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
4
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Sex-dependent mechanisms involved in renal tolerance to ischemia-reperfusion: Role of inflammation and histone H3 citrullination. Transpl Immunol 2020; 63:101331. [PMID: 32890741 DOI: 10.1016/j.trim.2020.101331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion (I/R) injury, an inevitable result of kidney transplantation, triggers early inflammatory events that affect graft viability. Evidence from human transplantation and preclinical models of I/R suggests that a female hormonal environment positively influences the ability to recover from ischemic injury. However, the mechanisms behind these effects remain mostly unexplored. Here, we studied the influence of sex on pro-inflammatory mediators involved in the pathophysiology of acute I/R injury in male, female, and female ovariectomized (OVX) Wistar rats that underwent unilateral renal ischemia for 45 min, followed by 24 h of reperfusion. We found improved renal function, reduced cytokine expression, and decreased infiltration of myeloperoxidase-positive cells in females after I/R, when compared to their male and female OVX counterparts. Remarkably, citrullination of histone H3 was exacerbated in serum and renal tubules of females after I/R. In contrast, we observed lower levels of citrullinated histone H3 in male and female OVX rats in response to I/R, mostly in neutrophil extracellular traps. Our results demonstrate that female sex promotes renal I/R tolerance by attenuating pro-inflammatory mediators involved in I/R-induced damage.
Collapse
|
6
|
Hanata N, Shoda H, Hatano H, Nagafuchi Y, Komai T, Okamura T, Suzuki A, Gunarta IK, Yoshioka K, Yamamoto K, Fujio K. Peptidylarginine Deiminase 4 Promotes the Renal Infiltration of Neutrophils and Exacerbates the TLR7 Agonist-Induced Lupus Mice. Front Immunol 2020; 11:1095. [PMID: 32655553 PMCID: PMC7324481 DOI: 10.3389/fimmu.2020.01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4), encoded by PADI4, plays critical roles in the immune system; however, its contribution to the pathogenesis of lupus nephritis remains controversial. The pathological roles of PAD4 were investigated in lupus model mice. An imiquimod (IMQ)-induced lupus model was analyzed in wild-type (WT) and Padi4-knockout (KO) mice. Proteinuria, serum anti-double stranded DNA (anti-dsDNA) antibody, and renal infiltrated cells were evaluated. Neutrophil migration and adhesion were assessed using adoptive transfer and adhesion assay. PAD4-regulated pathways were identified by RNA-sequencing of Padi4 KO neutrophils. Padi4 KO mice exhibited significant improvements in proteinuria progression compared with WT mice, whereas, serum anti-dsDNA antibody and immune complex deposition in the glomeruli showed no difference between both mice strains. Padi4 KO mice showed decreased neutrophil infiltration in the kidneys. Adoptively transferred Padi4 KO neutrophils showed decreased migration to the kidneys of IMQ-treated WT mice, and adhesion to ICAM-1 was impaired in Padi4 KO neutrophils. Padi4 KO neutrophils exhibited reduced upregulation of p38 mitogen-activated protein kinase (MAPK) pathways. Toll-like receptor 7 (TLR7)-primed Padi4 KO neutrophils demonstrated reduced phosphorylation of p38 MAPK and lower expression of JNK-associated leucine zipper protein (JLP), a p38 MAPK scaffold protein. Neutrophils from heterozygous Jlp KO mice showed impaired adhesion to ICAM-1 and decreased migration to the kidneys of IMQ-treated WT mice. These results indicated a pivotal role of PAD4-p38 MAPK pathway in renal neutrophil infiltration in TLR7 agonist-induced lupus nephritis, and the importance of neutrophil-mediated kidney inflammation. Inhibition of the PAD4-p38 MAPK pathway may help in formulating a novel therapeutic strategy against lupus nephritis.
Collapse
Affiliation(s)
- Norio Hanata
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Han SJ, Kim M, D'Agati VD, Lee HT. Norepinephrine released by intestinal Paneth cells exacerbates ischemic AKI. Am J Physiol Renal Physiol 2019; 318:F260-F272. [PMID: 31813250 DOI: 10.1152/ajprenal.00471.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Small intestinal Paneth cells play a critical role in acute kidney injury (AKI) and remote organ dysfunction by synthesizing and releasing IL-17A. In addition, intestine-derived norepinephrine is a major mediator of hepatic injury and systemic inflammation in sepsis. We tested the hypothesis that small intestinal Paneth cells synthesize and release norepinephrine to exacerbate ischemic AKI. After ischemic AKI, we demonstrated larger increases in portal venous norepinephrine levels compared with plasma norepinephrine in mice, consistent with an intestinal source of norepinephrine release after renal ischemia and reperfusion. We demonstrated that murine small intestinal Paneth cells express tyrosine hydroxylase mRNA and protein, a critical rate-limiting enzyme for the synthesis of norepinephrine. We also demonstrated mRNA expression for tyrosine hydroxylase in human small intestinal Paneth cells. Moreover, freshly isolated small intestinal crypts expressed significantly higher norepinephrine levels after ischemic AKI compared with sham-operated mice. Suggesting a critical role of IL-17A in Paneth cell-mediated release of norepinephrine, recombinant IL-17A induced norepinephrine release in the small intestine of mice. Furthermore, mice deficient in Paneth cells (SOX9 villin Cre mice) have reduced plasma norepinephrine levels after ischemic AKI. Finally, supporting a critical role for norepinephrine in generating ischemic AKI, treatment with the selective α-adrenergic antagonists yohimbine and phentolamine protected against murine ischemic AKI with significantly reduced renal tubular necrosis, inflammation, and apoptosis and less hepatic dysfunction. Taken together, we identify Paneth cells as a critical source of norepinephrine release that may lead to intestinal and liver injury and systemic inflammation after AKI.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Vivette Denise D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
8
|
Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol 2019; 78:106055. [PMID: 31816575 DOI: 10.1016/j.intimp.2019.106055] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Peptidyl arginine deiminase-4 (PAD4), a PAD enzyme family member, catalyzes the posttranslational conversion of arginine residues to citrulline in target proteins. Although PAD4 is believed to play a crucial role in various pathological conditions such as infectious diseases, autoimmune diseases, and ischemic conditions, the effect of PAD4 in myocardial infarction (MI)-induced cardiac injury remains to be examined. Here, we hypothesize that PAD4 contributes to cardiac ischemic injury by exacerbating the inflammatory response and promoting neutrophil extracellular trap (NET) formation after MI. Permanent left coronary artery ligation, a condition that mimics MI, was performed on male C57BL/6 mice. [(3S,4R)-3-amino-4-hydroxy-1-piperidinyl] [2-[1-(cyclopropylmethyl)-1H-indol-2-yl]-7-methoxy-1-methyl-1H-benzimidazol-5-yl]-methanone (GSK484), an inhibitor of PAD4, was delivered via intraperitoneal injection to inhibit PAD4 activity. Cardiac PAD4 expression, tissue injury scoring, neutrophil infiltration, cit-H3 expression, NET formation, inflammatory cytokine secretion, apoptosis, and cardiac function were analyzed. In the current study, we discovered the protective effect of PAD4 inhibition using the PAD4-specific inhibitor GSK484 in cardiomyocytes challenged by MI. GSK484-mediated PAD4 inhibition can moderately preserve ventricle histological structure and myocardium integrity after MI, thereby reducing the infarct size and decreasing myocardial enzyme levels in serum. PAD4 inhibition also effectively protects cardiomyocytes from MI-induced NET formation and inflammatory cytokine secretion, in turn alleviating cardiac ischemia-induced apoptosis of cardiomyocytes. Collectively, these findings demonstrate the efficacy of specific PAD4 inhibition in reducing MI-induced neutrophil infiltration, NET formation, inflammatory reaction, and cardiomyocyte apoptosis, thereby increasing overall cardiac function improvement. These results provide novel insights for the development of new strategies to treat cardiovascular dysfunction in MI patients.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wengang Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Sebastian Schmull
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jianmin Gu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
9
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
10
|
Rabadi MM, Han SJ, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4 exacerbates ischemic AKI by finding NEMO. Am J Physiol Renal Physiol 2019; 316:F1180-F1190. [PMID: 30943066 DOI: 10.1152/ajprenal.00089.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptidyl arginine deiminase-4 (PAD4) catalyzes the conversion of peptidylarginine residues to peptidylcitrulline. We have previously shown that kidney ischemia-reperfusion (I/R) injury increases renal proximal tubular PAD4 expression and activity. Furthermore, kidney PAD4 plays a critical role in ischemic acute kidney injury (AKI) by promoting renal tubular inflammation, neutrophil infiltration, and NF-κB activation. However, the mechanisms of PAD4-mediated renal tubular inflammation and NF-κB activation after I/R remain unclear. Here, we show that recombinant PAD4 preferentially citrullinates recombinant IKKγ [also called NF-κB essential modulator (NEMO)] over recombinant IKKα or IKKβ. Consistent with this finding, PAD4 citrullinated renal proximal tubular cell IKKγ and promoted NF-κB activation via IκBα phosphorylation in vitro. NEMO inhibition with a selective NEMO-binding peptide attenuated PAD4-mediated proinflammatory cytokine mRNA induction in HK-2 cells. Moreover, NEMO inhibition did not affect proximal tubular cell survival, proliferation, or apoptosis, unlike global NF-κB inhibition. In vivo, NEMO-binding peptide treatment protected against ischemic AKI. Finally, NEMO-binding peptide attenuated recombinant PAD4-mediated exacerbation of ischemic AKI, renal tubular inflammation, and apoptosis. Taken together, our results show that PAD4 exacerbates ischemic AKI and inflammation by promoting renal tubular NF-κB activity and inflammation via NEMO citrullination. Targeting NEMO activation may serve as a potential therapy for this devastating clinical problem.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
11
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
12
|
Abstract
Pathophysiologically, the classification of acute kidney injury (AKI) can be divided into three categories: (1) prerenal, (2) intrinsic, and (3) postrenal. Emerging evidence supports the involvement of renal tubular epithelial cells and the innate and adaptive arms of the immune system in the pathogenesis of intrinsic AKI. Pro-inflammatory damage-associated molecular patterns, pathogen-associated molecular patterns, hypoxia inducible factors, toll-like receptors, complement system, oxidative stress, adhesion molecules, cell death, resident renal dendritic cells, neutrophils, T and B lymphocytes, macrophages, natural killer T cells, cytokines, and secreted chemokines contribute to the immunopathogenesis of AKI. However, other immune cells and pathways such as M2 macrophages, regulatory T cells, progranulin, and autophagy exhibit anti-inflammatory properties and facilitate kidney tissue repair after AKI. Thus, therapies for AKI include agents such as anti-inflammatory (e.g., recombinant alkaline phosphatase), antioxidants (iron chelators), and apoptosis inhibitors. In preclinical toxicity studies, drug-induced kidney injury can be seen after exposure to a nephrotoxicant test article due to immune mechanisms and dysregulation of innate, and/or adaptive cellular immunity. The focus of this review will be on intrinsic AKI, as it relates to the immune and renal systems cross talks focusing on the cellular and pathophysiologic mechanisms of AKI.
Collapse
Affiliation(s)
- Zaher A. Radi
- Drug Safety R&D, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|