1
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
2
|
Wang FX, Mu G, Yu ZH, Qin ZS, Zhao X, Shi ZA, Fan X, Liu L, Chen Y, Zhou J. MiR-451 in Inflammatory Diseases: Molecular Mechanisms, Biomarkers, and Therapeutic Applications-A Comprehensive Review Beyond Oncology. Curr Issues Mol Biol 2025; 47:127. [PMID: 39996848 PMCID: PMC11854642 DOI: 10.3390/cimb47020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
MicroRNAs play crucial roles in regulating inflammatory responses and disease progression. Since its identification on chromosome 17q11.2 in 2005, miR-451 has emerged as a key regulator of multiple physiological and pathological processes. While its role in cancer has been extensively documented, accumulating evidence reveals miR-451's broader significance in inflammatory conditions through the regulation of NF-κB, AMPK, and PI3K signaling pathways. This comprehensive review systematically analyzes miR-451's multifaceted functions in inflammatory diseases, with particular focus on ischemia-reperfusion injury, arthritis, and acute organ injuries. We present compelling evidence for miR-451's potential as a diagnostic biomarker, demonstrating its distinctive expression patterns across various biological specimens and disease states. Furthermore, we elucidate how miR-451 modulates inflammatory responses through the regulation of immune cell populations, including microglia activation, macrophage polarization, and neutrophil chemotaxis. By integrating current evidence and bioinformatic analyses, we establish a theoretical framework linking miR-451's molecular mechanisms to its therapeutic applications. This review not only synthesizes the current understanding of miR-451 in inflammatory diseases but also provides critical insights for developing novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zhen-Shan Qin
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xing Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China;
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Zhang D, Liu J, Lv L, Chen X, Qian Y, Zhao P, Zhang Q, Chen Y, Qian H. Total flavone of Abelmoschus manihot regulates autophagy through the AMPK/mTOR signaling pathway to treat intestinal fibrosis in Crohn's disease. J Gastroenterol Hepatol 2024; 39:1586-1596. [PMID: 38803139 DOI: 10.1111/jgh.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND AIM Drug therapy is the treatment of choice for Crohn's disease because it effectively controls or prevents intestinal inflammation. The purpose was to research the molecular mechanism of the total flavones of Abelmoschus manihot (TFA) on intestinal fibrosis in Crohn's disease. METHODS A 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis model and IGF-1-treated intestinal fibroblasts were established. Then, TFA, 3-MA, and compound C were used treatments. Hematoxylin and eosin, Masson, and Picrosirius red staining were performed to observe the colon tissue. Immunohistochemical staining was used to detect α-SMA expression. Flow cytometry, CCK8, wound healing, and Transwell assays were conducted to determine apoptosis, proliferation, invasion, and migration. Col1a1 and Col3a1 levels were detected using quantitative polymerase chain reaction. Proteins related to autophagy and apoptosis were detected using western blotting. RESULTS TFA treated intestinal fibrosis in chronic Crohn's disease. Colon length was the shortest in the ethanol + TNBS group, and TFA treatment significantly improved the situation. Intestinal fibrosis and the percentage of collagen area decreased after TFA treatment. TFA reduced fibrosis by enhancing autophagy stimulation, whereas an autophagy inhibitor reversed the TFA effect. TFA also inhibited migration, proliferation, and collagen synthesis in intestinal fibroblasts. Moreover, it enhanced autophagy and apoptosis of intestinal fibroblasts. TFA upregulated p-AMPK expression and decreases p-mTOR levels. Compound C partially rescued the effect of TFA, indicating that TFA affected intestinal fibroblasts via the AMPK/mTOR pathway in vitro and in vivo. TFA also downregulated Col1a1 and Col3a1 expression. CONCLUSION TFA regulates autophagy through AMPK/mTOR signaling pathway to treat intestinal fibrosis, which may provide a new therapy for Crohn's disease treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiali Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lei Lv
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaopin Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunzhi Qian
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peizhen Zhao
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiaofeng Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yugen Chen
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haihua Qian
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yu S, Li Y, Lu X, Han Z, Li C, Yuan X, Guo D. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy. Cell Signal 2024; 118:111144. [PMID: 38493883 DOI: 10.1016/j.cellsig.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes that causes glomerular sclerosis and end-stage renal disease, leading to ascending morbidity and mortality in diabetic patients. Excessive accumulation of aberrantly modified proteins or damaged organelles, such as advanced glycation end-products, dysfunctional mitochondria, and inflammasomes is associated with the pathogenesis of DN. As one of the main degradation pathways, autophagy recycles toxic substances to maintain cellular homeostasis and autophagy dysregulation plays a crucial role in DN progression. MicroRNA (miRNA) and long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) molecules that regulate gene expression and have been implicated in both physiological and pathological conditions. Recent studies have revealed that autophagy-regulating miRNA and lncRNA have been involved in pathological processes of DN, including renal cell injury, mitochondrial dysfunction, inflammation, and renal fibrosis. This review summarizes the role of autophagy in DN and emphasizes the modulation of miRNA and lncRNA on autophagy during disease progression, for the development of promising interventions by targeting these ncRNAs in this disease.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yue Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zehui Han
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China.
| |
Collapse
|
5
|
Shepard BD, Chau J, Kurtz R, Rosenberg AZ, Sarder P, Border SP, Ginley B, Rodriguez O, Albanese C, Knoer G, Greene A, De Souza AMA, Ranjit S, Levi M, Ecelbarger CM. Nascent shifts in renal cellular metabolism, structure, and function due to chronic empagliflozin in prediabetic mice. Am J Physiol Cell Physiol 2024; 326:C1272-C1290. [PMID: 38602847 PMCID: PMC11193535 DOI: 10.1152/ajpcell.00446.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Jennifer Chau
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pinaki Sarder
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Samuel P Border
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Brandon Ginley
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Computational Cell Biology, Anatomy, and Pathology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
- Department of Radiology, Georgetown University, Washington, District of Columbia, United States
| | - Grace Knoer
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Aarenee Greene
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Aline M A De Souza
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
- Microscopy & Imaging Shared Resources, Georgetown University, Washington, District of Columbia, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
7
|
Guo Y, Wang H, Lyu R, Wang J, Wang T, Shi J, Lyu L. Nanocarrier-Mediated Delivery of MicroRNAs for Fibrotic Diseases. Mol Diagn Ther 2024; 28:53-67. [PMID: 37897655 DOI: 10.1007/s40291-023-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery system may facilitate the prevention and alleviation of fibrotic diseases in the future.
Collapse
Affiliation(s)
- Yanfang Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Hanying Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Rumin Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Juan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jingpei Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Mishra DD, Sahoo B, Maurya PK, Sharma R, Varughese S, Prasad N, Tiwari S. Therapeutic potential of urine exosomes derived from rats with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1157194. [PMID: 37251672 PMCID: PMC10213426 DOI: 10.3389/fendo.2023.1157194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal models and patients with Diabetic nephropathy (DN) showed increased levels of miRs with reno-protective potential. We examined whether urinary loss of such miRs is associated with their reduced renal levels in DN patients. We also tested whether injecting uE can leverage kidney disease in rats. In this study (study-1) we performed microarray profiling of miRNA in uE and renal tissues in DN patients and subjects with diabetes without DN (controls). In study-2, diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and 10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the human and rat showed the presence of exosome-specific proteins by immunoblotting. Microarray profiling revealed a set of 15 miRs having high levels in the uE, while lower in renal biopsies, from DN, compared to controls (n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective potential of these miRs. Taqman qPCR confirmed the opposite regulation of miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the uE of DN rats, collected between 6th-8th weeks, relative to baseline (before diabetes induction). uE- treated DN rats had significantly reduced urine albumin-to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control. Patients with diabetic nephropathy had reduced renal levels, while higher uE abundance of miRs with reno-protective potential. Reverting the urinary loss of miRs by injecting uE attenuated renal pathology in diabetic rats.
Collapse
Affiliation(s)
- Deendayal Das Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Biswajit Sahoo
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
9
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Fluitt MB, Mohit N, Gambhir KK, Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:5126968. [PMID: 35237694 PMCID: PMC8885279 DOI: 10.1155/2022/5126968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing at a staggering rate around the world. In the United States, more than 30.3 million Americans have DM. Type 2 diabetes mellitus (T2DM) accounts for 91.2% of diabetic cases and disproportionately affects African Americans and Hispanics. T2DM is a major risk factor for cardiovascular disease (CVD) and is the leading cause of morbidity and mortality among diabetic patients. While significant advances in T2DM treatment have been made, intensive glucose control has failed to reduce the development of macro and microvascular related deaths in this group. This highlights the need to further elucidate the underlying molecular mechanisms contributing to CVD in the setting of T2DM. Endothelial dysfunction (ED) plays an important role in the development of diabetes-induced vascular complications, including CVD and diabetic nephropathy (DN). Thus, the endothelium provides a lucrative means to investigate the molecular events involved in the development of vascular complications associated with T2DM. microRNAs (miRNA) participate in numerous cellular responses, including mediating messages in vascular homeostasis. Exosomes are small extracellular vesicles (40-160 nanometers) that are abundant in circulation and can deliver various molecules, including miRNAs, from donor to recipient cells to facilitate cell-to-cell communication. Endothelial cells are in constant contact with exosomes (and exosomal content) that can induce a functional response. This review discusses the modulatory role of exosomal miRNAs and proteins in diabetes-induced endothelial dysfunction, highlighting the significance of miRNAs as markers, mediators, and potential therapeutic interventions to ameliorate ED in this patient group.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Neal Mohit
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Diabetes Treatment Center, Howard University Hospital, 2041 Georgia Ave, NW, Washington, DC 20060, USA
| |
Collapse
|
11
|
Caus M, Eritja À, Bozic M. Role of microRNAs in Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:ijms222111416. [PMID: 34768854 PMCID: PMC8583993 DOI: 10.3390/ijms222111416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.
Collapse
|
12
|
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S, Reddy PH. Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion 2021; 58:49-58. [PMID: 33639273 DOI: 10.1016/j.mito.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/17/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) has become a major public health issue associated with a high risk of late-onset Alzheimer's disease (LOAD). Mitochondrial dysfunction is one of the molecular events that occur in the LOAD pathophysiology. The present study was planned to investigate the molecular alterations induced by hyperglycemia in the mitochondria of diabetic mice and further explore the possible ameliorative role of the mitochondria-targeted small peptide, SS31 in diabetic mice. For this purpose, we used a polygenic mouse model of type 2 diabetes, TALLYHO/JngJ (TH), and nondiabetic, SWR/J mice strains. The diabetic status in TH mice was confirmed at 8 weeks of age. The 24 weeks old experimental animals were segregated into three groups: Non-diabetic controls (SWR/J mice), diabetic (TH mice) and, SS31 treated diabetic TH mice. The mRNA and protein expression levels of mitochondrial proteins were investigated in all the study groups in the liver tissues using qPCR and immunoblot analysis. Also, the mitochondrial functions including H2O2 production, ATP generation, and lipid peroxidation were assessed in all the groups. Mitochondrial dysfunction was observed in TH mice as evident by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. The mRNA expression and Western blot analysis of mitochondrial dynamics (Drp1 and Fis1 - fission; Mfn1, Mfn2, and Opa1 -fusion), and biogenesis (PGC-1α, Nrf1, Nrf2, and TFAM) genes were significantly altered in diabetic TH mice. Furthermore, SS31 treatment significantly reduced the mitochondrial abnormalities and restore mitochondrial functions in diabetic TH mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Kavya Tamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Bhagavathi Ramasubramanian
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Jangampalli Adi Pradeepkiran
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
13
|
Bhatti JS, Thamarai K, Kandimalla R, Manczak M, Yin X, Kumar S, Vijayan M, Reddy PH. Mitochondria-Targeted Small Peptide, SS31 Ameliorates Diabetes Induced Mitochondrial Dynamics in Male TallyHO/JngJ Mice. Mol Neurobiol 2021; 58:795-808. [PMID: 33025510 PMCID: PMC7856017 DOI: 10.1007/s12035-020-02142-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
The escalating burden of type 2 diabetes (T2D) and its related complications has become a major public health challenge worldwide. Substantial evidence indicates that T2D is one of the culprits for the high prevalence of Alzheimer's disease (AD) in diabetic subjects. This study aimed to investigate the possible mitochondrial alterations in the pancreas induced by hyperglycemia in diabetes. We used a diabetic TallyHO/JngJ (TH) and non-diabetic, SWR/J mice strains. The diabetic and non-diabetic status in animals was assessed by performing intraperitoneal glucose tolerance test at four time points, i.e., 4, 8, 16, and 24 weeks of age. We divided 24-week-old TH and SWR/J mice into 3 groups: controls, diabetic TH mice, and diabetic TH mice treated with SS31 peptide. After the treatment of male TH mice with SS31, intraperitoneally, for 4 weeks, we studied mitochondrial dynamics, biogenesis, and function. The mRNA and protein expression levels of mitochondrial proteins were evaluated using qPCR and immunoblot analysis. The diabetic mice after 24 weeks of age showed overt pancreatic injury as demonstrated by disintegration and atrophy of β cells with vacuolization and reduced islet size. Mitochondrial dysfunction was observed in TH mice, as evidenced by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. Furthermore, mRNA expression and immunoblot analysis of mitochondrial dynamics genes were significantly affected in diabetic mice, compared with controls. However, treatment of animals with SS31 reduced mitochondrial dysfunction and restored most of the mitochondrial functions and mitochondrial dynamics processes to near normal in TH mice. In conclusion, mitochondrial dysfunction is established as one of the molecular events that occur in the pathophysiology of T2D. Further, SS31 treatment may confer protection against the mitochondrial alterations induced by hyperglycemia in diabetic TallyHO/JngJ mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Kavya Thamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, 506007, India
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA.
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Neurology and Public Health Departments, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
| |
Collapse
|