1
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
2
|
Fujita K, Kuwabara T, Wang B, Tanaka K, Ito K, Akishima-Fukasawa Y, Mikami T, Akasaka Y, Ishii T. Irradiation Attenuates Systemic Lupus Erythematosus-Like Morbidity in NZBWF1 Mice: Focusing on CD180-Negative Cells. J Immunol Res 2023; 2023:9969079. [PMID: 37886369 PMCID: PMC10599955 DOI: 10.1155/2023/9969079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can induce systemic inflammation. Ultraviolet-A and X-ray irradiation have been reported to have therapeutic effects in patients with SLE. We previously demonstrated that CD180-negative cells, these are radiosensitive, contribute to the development of SLE-like morbidity in NZBWF1 mice. In this study, the effects of irradiation on SLE-like morbidity manifestations in NZBWF1 mice and on CD180-negative cells were investigated. Whole-body irradiation, excluding the head, attenuated SLE-like morbidity in vivo, as indicated by the prevention of the renal lesion development, inhibition of anti-dsDNA antibody production, reduction of urinary protein levels, and prolongation of the lifespan. Irradiation also reduced the proportion of CD180-negative cells in the spleen. Although other immune cells or molecules may be triggered because of the whole-body irradiation treatment, previous research, and the current results suggest a strong relationship between the radiation-induced decrease in CD180-negative cells and the amelioration of SLE-like morbidities. Clinical trials assessing CD180-negative cells as a therapeutic target for SLE have been hampered by the lack of validated cell markers; nonetheless, the present findings suggest that radiotherapy may be a new therapeutic strategy for managing SLE symptoms.
Collapse
Affiliation(s)
- Kazuko Fujita
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Taku Kuwabara
- Department of Molecular Immunology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan
| | - Kei Ito
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
- Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Ibaragi, Tsuchiura-City 305-8577, Japan
| | - Yuri Akishima-Fukasawa
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Tetuo Mikami
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Toshiharu Ishii
- Department of Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Yokohama-City 230-8765, Japan
| |
Collapse
|
3
|
Boesen EI, Kakalij RM. Autoimmune-mediated renal disease and hypertension. Clin Sci (Lond) 2021; 135:2165-2196. [PMID: 34533582 PMCID: PMC8477620 DOI: 10.1042/cs20200955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease, chronic kidney disease (CKD), and mortality. Troublingly, hypertension is highly prevalent in patients with autoimmune renal disease and hastens renal functional decline. Although progress has been made over the past two decades in understanding the inflammatory contributions to essential hypertension more broadly, the mechanisms active in autoimmune-mediated renal diseases remain grossly understudied. This Review provides an overview of the pathogenesis of each of the major autoimmune diseases affecting the kidney that are associated with hypertension, and describes the current state of knowledge regarding hypertension in these diseases and their management. Specifically, discussion focuses on Systemic Lupus Erythematosus (SLE) and Lupus Nephritis (LN), Immunoglobulin A (IgA) Nephropathy, Idiopathic Membranous Nephropathy (IMN), Anti-Neutrophil Cytoplasmic Antibody (ANCA)-associated glomerulonephritis, and Thrombotic Thrombocytopenic Purpura (TTP). A summary of disease-specific animal models found to exhibit hypertension is also included to highlight opportunities for much needed further investigation of underlying mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Rahul M Kakalij
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
4
|
Dent EL, Taylor EB, Turbeville HR, Ryan MJ. Curcumin attenuates autoimmunity and renal injury in an experimental model of systemic lupus erythematosus. Physiol Rep 2020; 8:e14501. [PMID: 32652896 PMCID: PMC7354090 DOI: 10.14814/phy2.14501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder with prevalent hypertension and renal disease. To avoid side effects of immunosuppressive drugs, alternative therapies are needed. Curcumin has been used in Eastern medicine for its anti‐inflammatory and antioxidant properties. This study tested whether oral curcumin administration attenuates autoimmunity and renal injury during SLE. Female NZBWF1 (model of SLE) and NZW/LacJ (control) mice were administered curcumin (500 mg kg‐1 day‐1, oral gavage) for 14 days in two separate groups beginning at either 26 or 32 weeks of age. Body weight and composition were monitored throughout the study. Immune activity was assessed by spleen weight, circulating dsDNA autoantibodies, and B lymphocytes. Renal injury (albumin excretion, glomerulosclerosis, blood urea nitrogen (BUN)) was measured as a hemodynamic function (glomerular filtration rate (GFR), mean arterial pressure (MAP)) in conscious mice. Body weight and composition were maintained in curcumin‐treated SLE mice, but decreased in vehicle‐treated SLE mice. Curcumin‐treated SLE mice had lower spleen weight and renal injury (glomerulosclerosis) compared to vehicle‐treated SLE mice when treatment started at 26 weeks of age. When curcumin treatment started at 32 weeks of age, renal injury (glomerulosclerosis, BUN) was reduced in SLE mice compared to vehicle‐treated SLE mice. GFR was reduced, and MAP was increased in vehicle‐treated SLE mice compared to controls; however, these were not improved with curcumin. No significant changes were observed in curcumin‐treated control mice. These data suggest that curcumin modulates autoimmune activity and may lessen renal injury in female mice with SLE.
Collapse
Affiliation(s)
- Elena L Dent
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin B Taylor
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah R Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,GV (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Yosten GLC. AJP-Regulatory, Integrative and Comparative Physiology: Looking Toward the Future. Am J Physiol Regul Integr Comp Physiol 2020; 319:R82-R86. [DOI: 10.1152/ajpregu.00104.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|