1
|
Zhang G, Lv Z, Zhao Y, Chen R, Zhan X, Wang W, Sui H. Inhibitory effect of tumor necrosis factor-α on the basolateral Kir4.1/Kir5.1 channels in the thick ascending limb during diabetes. Exp Ther Med 2021; 22:1242. [PMID: 34539838 DOI: 10.3892/etm.2021.10677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy is a major contributor to the morbidity and mortality of patients with diabetes. TNF-α expression is elevated during diabetes and is implicated in the pathogenesis of diabetic nephropathy; however, its underlying molecular mechanisms remain unclear. The present study aimed to investigate the effect and molecular mechanism of TNF-α on the basolateral inwardly rectifying potassium (Kir)4.1/Kir5.1 channels in the thick ascending limb (TAL) of rat kidneys using western blotting and the patch clamp technique to provide a theoretical basis for the cause of the decrease in kidney concentrating capacity during diabetes. The results demonstrated that urinary TNF-α excretion and protein TNF-α expression in the TAL increased and basolateral Kir4.1/Kir5.1 channel activity decreased during diabetes; however, diabetic rats exhibited amelioration of Kir4.1/Kir5.1 activity with a soluble TNF-α antagonist, TNF receptor fusion protein (TNFR:Fc). These results suggested that TNF-α inhibited the activity of the basolateral Kir4.1/Kir5.1 channel in the TAL of rat kidneys during diabetes. In addition, the protein expression levels of phospholipase A2 (PLA2) and cyclooxygenase-2 (COX2) increased in diabetic rats, the effects of which deceased following treatment with TNFR:Fc compared with the diabetic group. Furthermore, an agonist of PLA2 (melittin) and COX2 production [prostaglandin E2 (PGE2)] inhibited the basolateral Kir4.1/Kir5.1 channels. Taken together, the results of the present study suggested that the inhibitory effect of TNF-α on the basolateral Kir4.1/Kir5.1 channels in the TAL during diabetes is mediated by the PLA2/COX2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Guoyan Zhang
- Department of Urology and Endocrinology, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Zhiming Lv
- Department of Urology and Endocrinology, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yang Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Rui Chen
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xiangyu Zhan
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Weiqun Wang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongyu Sui
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
2
|
Zhang G, Gui S, Wang W, Meng D, Meng Q, Luan H, Zhao R, Zhang J, Sui H. Acute stimulatory effect of tumor necrosis factor on the basolateral 50 pS K channels in the thick ascending limb of the rat kidney. Mol Med Rep 2018; 18:4733-4738. [PMID: 30221721 DOI: 10.3892/mmr.2018.9475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/13/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the acute effect and mechanism of tumor necrosis factor (TNF) on basolateral 50 pS K channels in the thick ascending limb (TAL) of the rat kidney. The TAL tubules were isolated from the rat kidney, and the activity of the 50 pS K channels was recorded using the patch‑clamp technique. The results indicated that the application of TNF (10 nM) significantly activated the 50 pS K channels and the TNF effect was concentration‑dependent. Inhibition of protein kinase A, phospholipase A2 and protein tyrosine kinase using pathway inhibitors (H89, AACOCF3 and Herbimycin A, respectively) did not abolish the stimulatory effect of TNF, indicating that none of these pathways mediated the TNF effect. By contrast, the phenylarsine oxide inhibitor against protein tyrosine phosphatase (PTP) decreased the activity of the 50 pS K channels and blocked the stimulatory effect of TNF on these channels. Furthermore, western blot analysis demonstrated that the application of TNF (10 nM) in the TAL increased the phosphorylation of PTP, an indication of PTP activity stimulation. Thus, it was concluded that the acute application of TNF may stimulate the basolateral 50 pS K channel in the TAL and the stimulatory effect of TNF may be mediated by the PTP‑dependent pathway.
Collapse
Affiliation(s)
- Guoyan Zhang
- Department of Urology, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Shiliang Gui
- Department of Urology, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Weiqun Wang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Dexin Meng
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qingmin Meng
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Haiyan Luan
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Rixin Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jiatian Zhang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongyu Sui
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
3
|
Oyarzún C, Garrido W, Alarcón S, Yáñez A, Sobrevia L, Quezada C, San Martín R. Adenosine contribution to normal renal physiology and chronic kidney disease. Mol Aspects Med 2017; 55:75-89. [PMID: 28109856 DOI: 10.1016/j.mam.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Adenosine is a nucleoside that is particularly interesting to many scientific and clinical communities as it has important physiological and pathophysiological roles in the kidney. The distribution of adenosine receptors has only recently been elucidated; therefore it is likely that more biological roles of this nucleoside will be unveiled in the near future. Since the discovery of the involvement of adenosine in renal vasoconstriction and regulation of local renin production, further evidence has shown that adenosine signaling is also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the adaptive response to acute insults, such as ischemia. However, the most interesting finding was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically increased its signaling via the adenosine receptors may change, switching to a state that induces renal damage and produces phenotypic changes in resident cells. This review discusses the physiological and pathophysiological roles of adenosine and pays special attention to the mechanisms associated with switching homeostatic nucleoside levels to increased adenosine production in kidneys affected by CKD.
Collapse
Affiliation(s)
- Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Wallys Garrido
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Yáñez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Luan H, Wu P, Wang M, Sui H, Fan L, Gu R. Effects of adenosine stimulation on the mRNA expression of CLCNKB in the basolateral medullary thick ascending limb of the rat kidney. Mol Med Rep 2016; 14:4391-4398. [PMID: 27748841 DOI: 10.3892/mmr.2016.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/06/2016] [Indexed: 11/06/2022] Open
Abstract
Adenosine is a molecule produced by several organs within the body, including the kidneys, where it acts as an autoregulatory factor. It mediates ion transport in several nephron segments, including the proximal tubule and the thick ascending limb (TAL). Ion transport is dictated in part by anionic chloride channels, which regulate crucial kidney functions, including the reabsorption of Na+ and Cl‑, urine concentration, and establishing and maintaining the corticomedullary osmotic gradient. The present study investigated the effects of adenosine on the mRNA expression of chloride voltage‑gated channel Kb (CLCNKB), a candidate gene involved in hypertension, which encodes for the ClC‑Kb channel. Medullary thick ascending limb (mTAL) tubules were isolated from the rat kidney, and primary cultures of mTAL cells from the mTAL tubules were established. The cells were treated with adenosine and the mRNA expression of CLCNKB was detected by reverse transcription‑quantitative polymerase chain reaction. The cells were also treated with pathways inhibitors (H8 and AACOCF3), and the protein expression of cyclic adenosine 3',5'‑monophosphate (cAMP)‑protein kinase A (PKA) and phospholipase A2 (PLA2) by were analyzed by western blotting. The findings indicated that adenosine increased the mRNA expression of CLCNKB in primary cultures of medullary TAL cells, and this stimulatory effect was regulated by the cAMP‑PKA and PLA2‑arachidonic acid (AA) pathways. The present study showed that adenosine affected the mRNA expression of CLCNKB, initially through the cAMP‑PKA pathway and then the PLA2‑AA pathway.
Collapse
Affiliation(s)
- Haiyan Luan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Wu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mingxiao Wang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyu Sui
- Department of Physiology, Basic Medical School, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Lili Fan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ruimin Gu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
5
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Kuczeriszka M, Dobrowolski L, Walkowska A, Sadowski J, Kompanowska-Jezierska E. Adenosine Effects on Renal Function in the Rat: Role of Sodium Intake and Cytochrome P450. ACTA ACUST UNITED AC 2013; 123:1-5. [DOI: 10.1159/000353705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
|