1
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
3
|
Hart EC, Head GA, Carter JR, Wallin BG, May CN, Hamza SM, Hall JE, Charkoudian N, Osborn JW. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. Am J Physiol Heart Circ Physiol 2017; 312:H1031-H1051. [PMID: 28364017 DOI: 10.1152/ajpheart.00703.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Over the past several decades, studies of the sympathetic nervous system in humans, sheep, rabbits, rats, and mice have substantially increased mechanistic understanding of cardiovascular function and dysfunction. Recently, interest in sympathetic neural mechanisms contributing to blood pressure control has grown, in part because of the development of devices or surgical procedures that treat hypertension by manipulating sympathetic outflow. Studies in animal models have provided important insights into physiological and pathophysiological mechanisms that are not accessible in human studies. Across species and among laboratories, various approaches have been developed to record, quantify, analyze, and interpret sympathetic nerve activity (SNA). In general, SNA demonstrates "bursting" behavior, where groups of action potentials are synchronized and linked to the cardiac cycle via the arterial baroreflex. In humans, it is common to quantify SNA as bursts per minute or bursts per 100 heart beats. This type of quantification can be done in other species but is only commonly reported in sheep, which have heart rates similar to humans. In rabbits, rats, and mice, SNA is often recorded relative to a maximal level elicited in the laboratory to control for differences in electrode position among animals or on different study days. SNA in humans can also be presented as total activity, where normalization to the largest burst is a common approach. The goal of the present paper is to put together a summary of "best practices" in several of the most common experimental models and to discuss opportunities and challenges relative to the optimal measurement of SNA across species.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/guidelines-for-measuring-sympathetic-nerve-activity/.
Collapse
Affiliation(s)
- Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts; and
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
4
|
Guild SJ, Barrett CJ, McBryde FD, Van Vliet BN, Head GA, Burke SL, Malpas SC. Quantifying sympathetic nerve activity: problems, pitfalls and the need for standardization. Exp Physiol 2009; 95:41-50. [DOI: 10.1113/expphysiol.2008.046300] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Ramchandra R, Hood SG, Frithiof R, May CN. Discharge properties of cardiac and renal sympathetic nerves and their impaired responses to changes in blood volume in heart failure. Am J Physiol Regul Integr Comp Physiol 2009; 297:R665-74. [PMID: 19535677 DOI: 10.1152/ajpregu.00191.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic nerve activity (SNA) consists of discharges that vary in amplitude and frequency, reflecting the level of recruitment of nerve fibers and the rhythmic generation and entrainment of activity by the central nervous system. It is unknown whether selective changes in these amplitude and frequency components account for organ-specific changes in SNA in response to alterations in blood volume or for the impaired SNA responses to volume changes in heart failure (HF). To address these questions, we measured cardiac SNA (CSNA) and renal SNA (RSNA) simultaneously in conscious, normal sheep and sheep in HF induced by rapid ventricular pacing. Volume expansion decreased CSNA (-62 +/- 10%, P < 0.05) and RSNA (-59 +/- 10%, P < 0.05) equally (n = 6). CSNA decreased as a result of a reduction in burst frequency, whereas RSNA fell because of falls in burst frequency and amplitude. Hemorrhage increased CSNA (+74 +/- 9%, P < 0.05) more than RSNA (+21 +/- 5%, P < 0.09), in both cases because of increased burst frequency, whereas burst amplitude decreased. In HF, burst frequency of CSNA (from 26 +/- 3 to 75 +/- 3 bursts/min) increased more than that of RSNA (from 63 +/- 4 to 79 +/- 4 bursts/min). In HF, volume expansion caused no change in CSNA and an attenuated decrease in RSNA, due entirely to decreased burst amplitude. Hemorrhage did not significantly increase SNA in either nerve in HF. These findings support the concept that the number of sympathetic fibers recruited and their firing frequency are controlled independently. Furthermore, afferent stimuli, such as changes in blood volume, cause organ-specific responses in each of these components, which are also selectively altered in HF.
Collapse
Affiliation(s)
- R Ramchandra
- Howard Florey Institute, Univ. of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
6
|
Wallin BG. Regulation of sympathetic nerve traffic to skeletal muscle in resting humans. Clin Auton Res 2006; 16:262-9. [PMID: 16810463 DOI: 10.1007/s10286-006-0357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
An overview is given of microneurographic studies of resting vasoconstrictor traffic in human muscle nerves (muscle sympathetic nerve activity = MSNA). In multiunit recordings, the activity consists of synchronized bursts of vasoconstrictor impulses, the outflow of which is under potent arterial baroreflex control. In agreement with this, the bursts always display cardiac rhythmicity and occur during temporary reductions of blood pressure. Burst occurrence shows a close inverse correlation to variations of diastolic blood pressure whereas the correlation to the strength of the bursts is weak or absent, suggesting that the mechanisms controlling the two parameters are not identical. These dynamic characteristics are similar in all subjects despite large, reproducible, interindividual differences in number of bursts. Such interindividual differences probably have a genetic origin, and since discharge frequencies in single vasoconstrictor fibers are similar in subjects with few and many bursts, the differences in multiunit activity are likely to be due to a higher number of active fibers in subjects with many bursts. The interindividual differences in multiunit activity are not associated with differences in resting blood pressure levels. Recent studies have revealed (a) an inverse relationship between resting levels of cardiac output and MSNA and (b) evidence of reduced vascular responsiveness to noradrenaline in subject with many sympathetic bursts at rest. These findings suggest that the vasoconstriction induced by the sympathetic impulses is balanced or reduced by these factors, which thereby contribute to the poor relationship between the mean number of sympathetic bursts and the blood pressure level.
Collapse
Affiliation(s)
- B Gunnar Wallin
- The Sahlgrenska Academy at Göteborg University, Institute of Neuroscience and Physiology, Sahlgren University Hospital, 413 45 Göteborg, Sweden.
| |
Collapse
|
7
|
Tang X, Chander AR, Schramm LP. Sympathetic activity and the underlying action potentials in sympathetic nerves: a simulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1504-13. [PMID: 12920060 DOI: 10.1152/ajpregu.00339.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the relationship between activity recorded in sympathetic nerves and the action potentials of the axons that contribute to that activity is important for understanding the processing of sympathetic activity by the central nervous system. Because this relationship cannot be determined experimentally and is difficult to predict analytically, we simulated the summed action potentials of 300 axons. This simulation closely resembled actual sympathetic activity and permitted us to know how many action potentials contributed to each burst of simulated sympathetic activity and the durations and amplitudes of each burst. We used these simulated data to examine a statistical method (cluster analysis) that has been used to identify and quantify bursts of sympathetic activity. Simulation indicated that the integrals of bursts, whether determined directly from the simulation or by integrating bursts detected by cluster analysis, were linearly correlated to the number of action potentials contributing to bursts. The variances of samples of the simulated signal were also linearly correlated to the number of action potentials. The amplitudes of bursts of sympathetic activity were less well correlated to the number of underlying action potentials. A linear relationship existed between the average number of action potentials contributing to simulated bursts and the integral of the amplitude spectra obtained by Fourier transform of the simulated activity. Finally, simulated experiments indicated that relatively brief recordings might be sufficient to detect statistically significant changes in sympathetic activity.
Collapse
Affiliation(s)
- Xiaorui Tang
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 606 Traylor Bldg., 720 Rutland Ave., Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
8
|
Kienbaum P, Karlssonn T, Sverrisdottir YB, Elam M, Wallin BG. Two sites for modulation of human sympathetic activity by arterial baroreceptors? J Physiol 2001; 531:861-9. [PMID: 11251065 PMCID: PMC2278508 DOI: 10.1111/j.1469-7793.2001.0861h.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Peroneal muscle sympathetic nerve activity (MSA), finger blood pressure and cardiac intervals were recorded at rest in 60 healthy subjects, aged 18-71 years. Arterial baroreflex control of MSA was analysed by relating each spontaneous sympathetic burst to the diastolic blood pressure and the cardiac interval of the heart beat during which the burst was generated. The results were expressed as blood pressure/cardiac interval threshold for occurrence of bursts, and as baroreflex sensitivity (i.e. the relationship between diastolic pressure/cardiac interval and burst strength). 2. Significant blood pressure/cardiac interval thresholds were present in all subjects and old subjects had less variability of thresholds than young subjects. In contrast, significant baroreflex sensitivity for diastolic pressure and cardiac interval was present in only 55 and 73 % of the subjects, respectively. There was no age-related difference in sensitivity. 3. In 40 subjects, two 5 min periods from the same recording were analysed. The number of sympathetic bursts and the threshold for occurrence of bursts were reproducible in all subjects. In contrast, significant baroreflex sensitivity in both periods was present in only 30 % (diastolic pressure) and 40 % (cardiac interval) of the subjects. 4. The results show that the baroreflex mechanisms regulating the occurrence and strength of sympathetic bursts are not identical. We suggest that the modulation occurs at two sites, one which determines whether or not a burst will occur, and another at which the strength of the discharge is determined.
Collapse
Affiliation(s)
- P Kienbaum
- Institute of Clinical Neuroscience, Unit of Clinical Neurophysiology, Sahlgren Hospital, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
9
|
DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1517-24. [PMID: 11049831 DOI: 10.1152/ajpregu.2000.279.5.r1517] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.
Collapse
Affiliation(s)
- G F DiBona
- Departments of Internal Medicine and Physiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| |
Collapse
|