1
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Humphrey S, Kirby R, Rudloff E. Magnesium physiology and clinical therapy in veterinary critical care. J Vet Emerg Crit Care (San Antonio) 2014; 25:210-25. [PMID: 25427407 DOI: 10.1111/vec.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/30/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review magnesium physiology including absorption, excretion, and function within the body, causes of magnesium abnormalities, and the current applications of magnesium monitoring and therapy in people and animals. ETIOLOGY Magnesium plays a pivotal role in energy production and specific functions in every cell in the body. Disorders of magnesium can be correlated with severity of disease, length of hospital stay, and recovery of the septic patient. Hypermagnesemia is seen infrequently in people and animals with significant consequences reported. Hypomagnesemia is more common in critically ill people and animals, and can be associated with platelet, immune system, neurological, and cardiovascular dysfunction as well as alterations in insulin responsiveness and electrolyte imbalance. DIAGNOSIS Measurement of serum ionized magnesium in critically or chronically ill veterinary patients is practical and provides information necessary for stabilization and treatment. Tissue magnesium concentrations may be assessed using nuclear magnetic resonance spectroscopy as well as through the application of fluorescent dye techniques. THERAPY Magnesium infusions may play a therapeutic role in reperfusion injury, myocardial ischemia, cerebral infarcts, systemic inflammatory response syndromes, tetanus, digitalis toxicity, bronchospasms, hypercoagulable states, and as an adjunct to specific anesthetic or analgesic protocols. Further veterinary studies are needed to establish the frequency and importance of magnesium disorders in animals and the potential benefit of magnesium infusions as a therapeutic adjunct to specific diseases. PROGNOSIS The prognosis for most patients with magnesium disorders is variable and largely dependent on the underlying cause of the disorder.
Collapse
Affiliation(s)
- Sarah Humphrey
- From the Animal Emergency Center and Specialty Services, Glendale, WI 52309
| | | | | |
Collapse
|
3
|
Abstract
Magnesium's most important role is in the release of chemical energy. Although most magnesium is stored outside of the extracellular fluid compartment, the regulated value is blood magnesium concentration. Cellular magnesium and bone magnesium do not play a major role in the defense of blood magnesium concentration; the major role is played by the kidney, where the renal tubule matches the urinary magnesium excretion and the net entry of magnesium into the extracellular fluid. In the kidney, magnesium is reabsorbed in the proximal tubule, the thick ascending limb of the loop of Henle, and the distal convoluted tubule. Magnesium absorption is mainly paracellular in the proximal tubule and in the thick ascending limb of the loop of Henle, whereas it is transcellular in the distal convoluted tubule. Several hormones and extracellular magnesium itself alter the distal tubular handling of magnesium, but the hormone(s) regulating extracellular magnesium concentration remains unknown.
Collapse
Affiliation(s)
- Pascal Houillier
- Université Paris-Descartes, Sorbonne Paris-Cité, F-75006 Paris, France
| |
Collapse
|
4
|
Schweigel M, Park HS, Etschmann B, Martens H. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2006; 290:G56-65. [PMID: 16109844 DOI: 10.1152/ajpgi.00014.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examines the routes by which Mg2+ leaves cultured ovine ruminal epithelial cells (REC). Mg2+-loaded (6 mM) REC were incubated in completely Mg2+-free solutions with varying Na+ concentrations, and the Mg2+ extrusion rate was calculated from the increase of the Mg2+ concentration in the incubation medium determined with the aid of the fluorescent probe mag-fura 2 (Na+ salt). In other experiments, REC were also studied for the intracellular free Mg2+ concentration ([Mg2+]i; using mag-fura 2), the intracellular Na+ concentration (using Na+-binding benzofuran isophthalate), the intracellular cAMP concentration ([cAMP]i; using an enzyme-linked immunoassay), and Na+/Mg2+ exchanger existence [using a monoclonal antibody (mAb) raised against the porcine red blood cell Na+/Mg2+ exchanger]. Mg2+-loaded REC show a Mg2+ efflux that was strictly dependent on extracellular Na+. The Mg2+ extrusion rate increased from 0.018+/-0.009 in a Na+-free medium to 0.73+/-0.3 mM.l cells-1.min-1 in a 145 mM Na+ medium and relates to extracellular Na+ concentration ([Na+]e) according to a typical saturation kinetic (Km value for [Na+]e=24 mM; maximal velocity=11 mM.l cells-1.min-1). Mg2+ efflux was reduced by imipramine (48%) and increased after application of dibutyryl-cAMP (55%) or PGE2 (17%). These effects are completely abolished in Na+-free media. Furthermore, an elevation of [cAMP]i led to an [Mg2+]i decrease that amounted to 375+/-105 microM. The anti-Na+/Mg2+ exchanger mAb inhibits Mg2+ extrusion; moreover, it detects a specific 70-kDa immunoreactive band in protein lysates of ovine REC. The data clearly demonstrate that a Na+/Mg2+ exchanger is existent in the cell membrane of REC. The transport protein is the main pathway (97%) for Mg2+ extrusion and can be assumed to play a considerable role in the process of Mg2+ absorption as well as the maintenance of the cellular Mg2+ homeodynamics.
Collapse
Affiliation(s)
- Monika Schweigel
- Department of Veterinary Physiology, Free University of Berlin, Germany.
| | | | | | | |
Collapse
|
5
|
Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 2004; 19:13-25. [PMID: 14634861 DOI: 10.1007/s00467-003-1293-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 07/25/2003] [Accepted: 07/28/2003] [Indexed: 10/26/2022]
Abstract
Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of Pediatrics, Philipps University, Deutschhausstrasse 12, 35037 Marburg, Germany
| | | | | |
Collapse
|
6
|
Abstract
The serum levels of parathyroid hormone and magnesium depend on each other in a complex manner. The secretion of parathyroid hormone by the parathyroid is physiologically controlled by the serum calcium level, but magnesium can exert similar effects. While low levels of magnesium stimulate parathyroid hormone secretion, very low serum concentrations induce a paradoxical block. This block leads to clinically relevant hypocalcemia in severely hypomagnesiemic patients. The mechanism of this effect has recently been traced to an activation of the alpha-subunits of heterotrimeric G-proteins. This activation mimicks activation of the calcium sensing receptor and thus causes inhibition of parathyroid hormone secretion. In addition to the effects of magnesium on parathyroid hormone secretion, parathyroid hormone in turn regulates magnesium homeostasis by modulating renal magnesium reabsorption. The distal convoluted tubule is of crucial importance for parathyroid hormone-regulated magnesium homeostasis.
Collapse
Affiliation(s)
- Thorsten Vetter
- Institute for Pharmacology and Toxicology, Würzburg, Germany
| | | |
Collapse
|
7
|
Dai LJ, Kang HS, Kerstan D, Ritchie G, Quamme GA. ATP inhibits Mg(2+) uptake in MDCT cells via P2X purinoceptors. Am J Physiol Renal Physiol 2001; 281:F833-40. [PMID: 11592941 DOI: 10.1152/ajprenal.0349.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleotides have diverse effects on water and electrolyte reabsorption within the distal tubule of the nephron. As the distal tubule is important in control of renal Mg(2+) balance, we determined the effects of ATP on cellular Mg(2+) uptake in this segment. The effects of ATP on immortalized mouse distal convoluted tubule (MDCT) cells were studied by measuring Mg(2+) uptake with fluorescence techniques. The mean basal Mg(2+) uptake rate was 165 +/- 6 nM/s. ATP inhibited basal Mg(2+) uptake and hormone-stimulated Mg(2+) entry by 40%. Both P2X (P2X1-P2X5 subtypes) and P2Y2 receptor subtypes were identified in MDCT cells using differential RT-PCR. Activation of both receptor subtypes with selective agonists increased intracellular Ca(2+) concentration, P2X purinoceptors by ionotropic-gated channels, and P2Y receptors via G protein-mediated intracellular Ca(2+) release. The more relatively selective P2X agonists [beta,gamma-methylene ATP (beta,gamma-Me-ATP) and 2'- and -3'-O-(4-benzoyl-benzoyl)-ATP] inhibited arginine vasopressin (AVP)- and parathyroid hormone (PTH)-mediated Mg(2+) uptake whereas agonists more selective for P2Y purinoceptors (UTP, ADP, and 2-methylthio-ATP) were without effect. Removal of extracellular Ca(2+) diminished beta,gamma-Me-ATP-mediated increase in intracellular Ca(2+) and inhibition of AVP-stimulated Mg(2+) entry. We conclude from this information that ATP inhibited Mg(2+) uptake in MDCT cells through P2X purinoceptors expressed in this distal convoluted tubule cell line.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
8
|
Jensen BL, Stubbe J, Hansen PB, Andreasen D, Skøtt O. Localization of prostaglandin E(2) EP2 and EP4 receptors in the rat kidney. Am J Physiol Renal Physiol 2001; 280:F1001-9. [PMID: 11352840 DOI: 10.1152/ajprenal.2001.280.6.f1001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the localization of cAMP-coupled prostaglandin E(2) EP2 and EP4 receptor expression in the rat kidney. EP2 mRNA was restricted to the outer and inner medulla in rat kidney, as determined by RNase protection assay. RT-PCR analysis of microdissected resistance vessels and nephron segments showed EP2 expression in descending thin limb of Henle's loop (DTL) and in vasa recta of the outer medulla. The EP4 receptor was expressed in distal convoluted tubule (DCT) and cortical collecting duct (CCD) in preglomerular vessels, and in outer medullary vasa recta. Butaprost, an EP2 receptor-selective agonist, dose dependently raised cAMP levels in microdissected DTL and outer medullary vasa recta specimens but had no effect in EP2-negative outer medullary collecting duct segments. Dietary salt intake did not alter EP2 expression in the kidney medulla. These results suggest that PGE(2) may act in the resistance vessels and in the DTL and DCT-CCD segments as a paracrine, cAMP-dependent regulator of vascular resistance and tubular transport, respectively.
Collapse
Affiliation(s)
- B L Jensen
- Department of Physiology and Pharmacology, University of Southern Denmark-Odense, DK-5000 Odense C, Denmark.
| | | | | | | | | |
Collapse
|
9
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA. beta-Adrenergic agonists stimulate Mg(2+) uptake in mouse distal convoluted tubule cells. Am J Physiol Renal Physiol 2000; 279:F1116-23. [PMID: 11097631 DOI: 10.1152/ajprenal.2000.279.6.f1116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Adrenergic agonists influence electrolyte reabsorption in the proximal tubule, loop of Henle, and distal tubule. Although isoproterenol enhances magnesium absorption in the thick ascending limb, it is unclear what effect, if any, beta-adrenergic agonists have on tubular magnesium handling. The effects of isoproterenol were studied in immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg(2+) uptake with fluorescence techniques. Intracellular free Mg(2+) concentration ([Mg(2+)](i)) was measured in single MDCT cells by using microfluorescence with mag-fura-2. To assess Mg(2+) uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by culturing in Mg(2+)-free media for 16 h and then placed in 1.5 mM MgCl(2), and the changes in [Mg(2+)](i) were determined. [Mg(2+)](i) returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg(2+)](i))/dt, of 168 +/- 11 nM/s. Isoproterenol stimulated Mg(2+) entry in a concentration-dependent manner, with a maximal response of 252 +/- 11 nM/s, at a concentration of 10(-7) M, that represented a 50 +/- 7% increase in uptake rate above control values. This was associated with a sixfold increase in intracellular cAMP generation. Isoproterenol-stimulated Mg(2+) uptake was completely inhibited with RpcAMPS, a protein kinase A inhibitor, and U-73122, a phospholipase C inhibitor, and partially blocked by RO 31-822, a protein kinase C inhibitor. Accordingly, isoproterenol-mediated Mg(2+) entry rates involve multiple intracellular signaling pathways. Aldosterone potentiated isoproterenol-stimulated Mg(2+) uptake (326 +/- 31 nM/s), whereas elevation of extracellular Ca(2+) inhibited isoproterenol-mediated cAMP accumulation and Mg(2+) uptake, 117 +/- 37 nM/s. These studies demonstrate that isoproterenol stimulates Mg(2+) uptake in a cell line of mouse distal convoluted tubules that is modulated by hormonal and extracellular influences.
Collapse
Affiliation(s)
- H S Kang
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|