1
|
Leite-Dellova DCA, Szriber SJ, Merighe GKF, Polidoro JZ, Rebouças NA, Oliveira-Souza M, de Mello-Aires M. Signaling pathways involved in the rapid biphasic effect of aldosterone on Na +/H + exchanger in rat proximal tubule cells. J Steroid Biochem Mol Biol 2018; 182:87-94. [PMID: 29702262 DOI: 10.1016/j.jsbmb.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The receptors and signaling pathways for nongenomic effects of aldosterone (Aldo) on the proximal Na+/H+ exchanger are still unknown; therefore, the aim of this study was to investigate the mineralocorticoid receptor (MR) and/or glucocorticoid receptor (GR) participation in rapid Aldo effects on NHE1 (basolateral Na+/H+ exchanger isoform) and cytosolic calcium concentration ([Ca2+]i). In addition, phospholipase C (PLC), protein kinase C (PKC), and mitogen-activated protein kinase kinase (MEK) involvement in signaling pathways of such effects was evaluated, using immortalized proximal tubule cells of rat (IRPTC) as an experimental model. MR and GR expression was investigated using reverse transcription polymerase chain reaction and immunoblotting. The intracellular pH recovery rate (after acid loading) and [Ca2+]i were determined by the probes BCECF-AM and FURA 2-AM, respectively. Aldo (10-12 M) promoted a moderate increase in [Ca2+]i and stimulation of NHE1, whereas Aldo (10-6 M) greatly increased the [Ca2+]i, but inhibited the NHE1. BAPTA-AM (a calcium chelator), GR antagonism and inhibition of PLC, PKC and MEK pathway abolished the biphasic and dose-dependent effect of Aldo on NHE1 and decreased the [Ca2+]i; whereas MR do not appear to participate in this rapid signaling in IRPTC cells. The reduction of GR content, by gene silencing, abolished the Aldo effect on NHE1, in low concentration, confirming the importance of this receptor in the rapid modulation of proximal sodium and hydrogen transports.
Collapse
Affiliation(s)
- Deise C A Leite-Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil.
| | - Shirley J Szriber
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Giovana K F Merighe
- Basic Sciences, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Juliano Z Polidoro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Nancy A Rebouças
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Margarida de Mello-Aires
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, de Mello-Aires M. The effects of angiotensin-(1-7) on the exchanger NHE3 and on [Ca 2+] i in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2017; 313:F450-F460. [PMID: 28490531 DOI: 10.1152/ajprenal.00557.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
The acute effects of angiotensin-1-7 [ANG-(1-7)] on the reabsorptive bicarbonate flow (J[Formula: see text]) were evaluated using stationary microperfusion in vivo in the proximal tubules of spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar-Kyoto (WKY) rats, using a microelectrode sensitive to H+ In WKY rats, the control J[Formula: see text] was 2.40 ± 0.10 nmol·cm-2·s-1 (n = 120); losartan (10-7 M) or A779 (10-6 M, a specific Mas antagonist), alone or in combination with losartan, decreased the J[Formula: see text] ANG-(1-7) had biphasic effects on J[Formula: see text]: at 10-9 M, it inhibited, and at 10-6, it stimulated the flow. S3226 [10-6 M, a specific Na+-H+ exchanger 3 (NHE3) antagonist] decreased J[Formula: see text] and changed the stimulatory effect of ANG-(1-7) to an inhibitory one but did not alter the inhibitory action of ANG-(1-7). In SHR, the control J[Formula: see text] was 2.04 ± 0.13 nmol·cm-2·s-1 (n = 56), and A779 and/or losartan reduced the flow. ANG-(1-7) at 10-9 M increased J[Formula: see text], and ANG-(1-7) at 10-6 M reduced it. The effects of A779, losartan, and S3226 on the J[Formula: see text] were similar to those found in WKY rats, which indicated that in SHR, the ANG-(1-7) action on the NHE3 was via Mas and ANG II type 1. The cytosolic calcium in the WKY or SHR rats was ~100 nM and was increased by ANG-(1-7) at 10-9 or 10-6 M. In hypertensive animals, a high plasma level of ANG-(1-7) inhibited NHE3 in the proximal tubule, which mitigated the hypertension caused by the high plasma level of ANG II.
Collapse
Affiliation(s)
| | - Deise C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Pirassununga, Brazil; and
| | - Fernanda Barrinha Fernandes
- Presbiteriana Mackenzie University of São Paulo and Department of Nephrology, Federal University of São Paulo-Universidade Estadual Paulista, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Margarida de Mello-Aires
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Huang YP, Gao FF, Wang B, Zheng FC, Zhang YM, Chen YC, Huang ZQ, Zheng YS, Zhong SP, Shi GG. N-n-butyl haloperidol iodide inhibits H2O2-induced Na+/Ca2+-exchanger activation via the Na+/H+ exchanger in rat ventricular myocytes. Drug Des Devel Ther 2014; 8:1257-67. [PMID: 25246767 PMCID: PMC4166912 DOI: 10.2147/dddt.s63163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-n-butyl haloperidol iodide (F2), a novel compound, has shown palliative effects in myocardial ischemia/reperfusion (I/R) injury. In this study, we investigated the effects of F2 on the extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/Na(+)/H(+) exchanger (NHE)/Na(+)/Ca(2+) exchanger (NCX) signal-transduction pathway involved in H2O2-induced Ca(2+) overload, in order to probe the underlying molecular mechanism by which F2 antagonizes myocardial I/R injury. Acute exposure of rat cardiac myocytes to 100 μM H2O2 increased both NHE and NCX activities, as well as levels of phosphorylated MEK and ERK. The H2O2-induced increase in NCX current (I NCX) was nearly completely inhibited by the MEK inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis[o-aminophenylmercapto] butadiene), but only partly by the NHE inhibitor 5-(N,N-dimethyl)-amiloride (DMA), indicating the I NCX increase was primarily mediated by the MEK/mitogen-activated protein kinase (MAPK) pathway, and partially through activation of NHE. F2 attenuated the H2O2-induced I NCX increase in a concentration-dependent manner. To determine whether pathway inhibition was H2O2-specific, we examined the ability of F2 to inhibit MEK/ERK activation by epidermal growth factor (EGF), and NHE activation by angiotensin II. F2 not only inhibited H2O2-induced and EGF-induced MEK/ERK activation, but also completely blocked both H2O2-induced and angiotensin II-induced increases in NHE activity, suggesting that F2 directly inhibits MEK/ERK and NHE activation. These results show that F2 exerts multiple inhibitions on the signal-transduction pathway involved in H2O2-induced I NCX increase, providing an additional mechanism for F2 alleviating intracellular Ca(2+) overload to protect against myocardial I/R injury.
Collapse
Affiliation(s)
- Yong-Pan Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Fen-Fei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Fu-Chun Zheng
- Department of Pharmacy, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yan-Mei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yi-Cun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zhan-Qin Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yan-Shan Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shu-Ping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Gang-Gang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Gang-Gang Shi, Department of Pharmacology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China, Tel +86 754 8890 0301, Fax +86 754 8855 7562, Email
| |
Collapse
|
4
|
Casare F, Milan D, Fernandez R. Stimulation of calcium-sensing receptor increases biochemical H⁺-ATPase activity in mouse cortex and outer medullary regions. Can J Physiol Pharmacol 2013; 92:181-8. [PMID: 24593782 DOI: 10.1139/cjpp-2013-0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this project was to investigate the interaction between the calcium-sensing receptor (CaSR) and proton extrusion by the V-ATPase and gastric-like isoform of the H(+)/K(+)-ATPase in the mouse nephron. Biochemical activity of H(+)- ATPases was analysed using a partially purified membrane fraction of mouse cortex and outer medullary region. The V-ATPase activity (sensitive to 10(-7) mol·L(-1) bafilomycin) from the cortical and outer medullary region was significantly stimulated by increasing the [Formula: see text] (outside Ca(2+)), in a dose-dependent pattern. Gastric H(+)/K(+)-ATPase activity (sensitive to 10(-5) mol·L(-1) Schering 28080) was also sensitive to changes in [Formula: see text] levels. A significant increase in V-ATPase activity was also observed when CaSR was stimulated with agonists such as 300 μmol·L(-1) Gd(3+) and 200 μmol·L(-1) neomycin, both in the cortex and outer medulla. The cortical and outer medullary gastric H(+)/K(+)-ATPase activity was also stimulated by Gd(3+) and neomycin. Finally, cortical V-ATPase activity was significantly stimulated by 10(-9) mol·L(-1) angiotensin II, and the stimulation of CaSR in the presence of angiotensin significantly enhanced this effect, suggesting that an interaction in the intracellular signaling pathways is involved. In summary, CaSR stimulation enhances the biochemical activity of V-ATPase and gastric H(+)/K(+)-ATPase in both the cortical and outer medullary region of mouse kidney.
Collapse
Affiliation(s)
- Fernando Casare
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Centro Politécnico s/n., PO Box 19031, Jardim das Américas, Curitiba, Paraná, CEP 81531-990, Brasil
| | | | | |
Collapse
|
5
|
Liu CP, Chou CT, Liang WZ, Cheng JS, Chang HT, Kuo DH, Ko KC, Chiang NN, Wu RF, Shieh P, Jan CR. Pathways of [Ca2+]irise evoked by angiotensin II in MDCK renal tubular cells. J Recept Signal Transduct Res 2013; 33:380-6. [DOI: 10.3109/10799893.2013.838788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Costa-Pessoa JMD, Figueiredo CFDSR, Thieme K, Oliveira-Souza M. The regulation of NHE₁ and NHE₃ activity by angiotensin II is mediated by the activation of the angiotensin II type I receptor/phospholipase C/calcium/calmodulin pathway in distal nephron cells. Eur J Pharmacol 2013; 721:322-31. [PMID: 24076179 DOI: 10.1016/j.ejphar.2013.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/22/2013] [Indexed: 02/03/2023]
Abstract
Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1.
Collapse
Affiliation(s)
- Juliana Martins da Costa-Pessoa
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas. University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | | |
Collapse
|
7
|
Castelo-Branco RC, Leite-Delova DCA, de Mello-Aires M. Dose-dependent effects of angiotensin-(1-7) on the NHE3 exchanger and [Ca(2+)](i) in in vivo proximal tubules. Am J Physiol Renal Physiol 2013; 304:F1258-65. [PMID: 23515716 DOI: 10.1152/ajprenal.00401.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Collapse
Affiliation(s)
- Regiane C Castelo-Branco
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Braga-Sobrinho C, Leite-Dellova DCA, Mello-Aires M. Action of ANP on the nongenomic dose-dependent biphasic effect of aldosterone on NHE1 in proximal S3 segment. J Steroid Biochem Mol Biol 2012; 128:89-97. [PMID: 22154810 DOI: 10.1016/j.jsbmb.2011.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 10/15/2022]
Abstract
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na⁺/H⁺ exchanger isoform), after the acid load induced by NH₄Cl, and on the cytosolic free calcium concentration ([Ca²⁺](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15±0.008 and the basal pHirr was 0.195±0.012 pH units/min (number of tubules/number of tubular areas=16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10⁻¹² M) increases the pHirr to approximately 59% of control value, and ALDO (10⁻⁶ M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10⁻⁶ M) or BAPTA (5×10⁻⁵ M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca²⁺](i) was 104±3 nM (15), and ALDO (10⁻¹² or 10⁻⁶ M) increased the basal [Ca²⁺](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca²⁺](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca²⁺](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations.
Collapse
Affiliation(s)
- C Braga-Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, 05508-900 SP, Brazil
| | | | | |
Collapse
|
9
|
Leite-Dellova DCA, Malnic G, Mello-Aires M. Genomic and nongenomic stimulatory effect of aldosterone on H+-ATPase in proximal S3 segments. Am J Physiol Renal Physiol 2010; 300:F682-91. [PMID: 21190948 DOI: 10.1152/ajprenal.00172.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(+)-ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 ± 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10), 10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 ± 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).
Collapse
Affiliation(s)
- D C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, Campus of Pirassununga, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Beloto-Silva O, Machado UF, Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J Membr Biol 2010; 239:157-65. [PMID: 21140140 DOI: 10.1007/s00232-010-9334-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 11/24/2022]
Abstract
The effect of glucose on the intracellular pH (pH(i)) recovery rate (dpH(i)/dt) and Na(+)-glucose transporter (SGLT) localization was investigated in HEK-293 cells, a cell line that expresses endogenous NHE1, NHE3, SGLT1, and SGLT2 proteins. The activity of the Na(+)/H(+) exchangers (NHEs) was evaluated by using fluorescence microscopy. The total and membrane protein expression levels were analyzed by immunoblotting. In cells cultivated in 5 mM glucose, the pH(i) recovery rate was 0.169 ± 0.020 (n = 6). This value did not change in response to the acute presence of glucose at 2 or 10 mM, but decreased with 25 mM glucose, an effect that was not observed with 25 mM mannitol. Conversely, the chronic effect of high glucose (25 mM) increased the pH(i) recovery rate (~40%, P < 0.05), without changes in the total levels of NHE1, NHE3, or SGLT1 expression, but increasing the total cellular (~50%, P < 0.05) and the plasma membrane (~100%, P < 0.01) content of SGLT2. Treatment with H-89 (10(-6) M) prevented the stimulatory effect of chronic glucose treatment on the pH(i) recovery rate and SGLT2 expression in the plasma membrane. Our results indicate that the effect of chronic treatment with a high glucose concentration is associated with increased NHEs activity and plasma membrane expression of SGLT2 in a protein kinase A-dependent way. The present results reveal mechanisms of glucotoxicity and may contribute to understanding the diabetes-induced damage of this renal epithelial cell.
Collapse
Affiliation(s)
- Olívia Beloto-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
11
|
Macedo RC, Bolin AP, Marin DP, Otton R. Astaxanthin addition improves human neutrophils function: in vitro study. Eur J Nutr 2010; 49:447-57. [PMID: 20361333 DOI: 10.1007/s00394-010-0103-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present study was to evaluate the in vitro effect of carotenoid astaxanthin (ASTA) on the phagocytic and microbicidal capacities, cytokine release, and reactive oxygen species production in human neutrophils. METHODS The following parameters were evaluated: cytotoxic effect of ASTA on human neutrophils viability, phagocytic and microbicidal capacities of neutrophils by using Candida albicans assay, intracellular calcium mobilization (Fura 2-AM fluorescent probe), superoxide anion (lucigenin and DHE probes), hydrogen peroxide (H₂O₂, phenol red), and nitric oxide (NO·) (Griess reagent) production, activities of antioxidant enzymes (total/Mn-SOD, CAT, GPx, and GR), oxidative damages in biomolecules (TBARS assay and carbonyl groups), and cytokine (IL-6 and TNF-alpha) release. RESULTS Astaxanthin significantly improves neutrophil phagocytic and microbicidal capacity, and increases the intracellular calcium concentration and NO· production. Both functional parameters were accompanied by a decrease in superoxide anion and hydrogen peroxide and IL-6 and TNF-α production. Oxidative damages in lipids and proteins were significantly decreased after ASTA-treatment. CONCLUSIONS Taken together our results are supportive to a beneficial effect of astaxanthin-treatment on human neutrophils function as demonstrated by increased phagocytic and fungicide capacity as well as by the reduced superoxide anion and hydrogen peroxide production, however, without affecting neutrophils capacity to kill C. albicans. This process appears to be mediated by calcium released from intracellular storages as well as nitric oxide production.
Collapse
Affiliation(s)
- Rita C Macedo
- Postgraduate Program, Health Science, CBS, Cruzeiro do Sul University, Avenida Regente Feijó, 1295. Tatuapé, São Paulo, SP CEP 03342-000, Brazil
| | | | | | | |
Collapse
|
12
|
Buttignol MHP, Barros MP, Macedo RC, Marin DP, Otton R. Phenanthrene decreases neutrophil function by disrupting intracellular redox balance. J Appl Toxicol 2010; 30:476-86. [PMID: 20238386 DOI: 10.1002/jat.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of the present work was to evaluate whether the treatment of human neutrophils with phenanthrene (PHN) can alter the phagocytic and microbicidal capacity of these cells by causing a disruption in redox balance. Peripheral neutrophils from healthy subjects were treated for up to 24 h with increasing concentrations of phenanthrene. Phagocytic/microbicidal activities, antioxidant enzymes, oxidative lesions (thiobarbituric acid-reactive substances and protein thiol and carbonyl groups) and redox signaling compounds (intracellular Ca(2+), superoxide, hydrogen peroxide and nitric oxide) were monitored on neutrophils exposed to 10 microg PHN ml(-1). Cell viability decreased abruptly at PHN concentrations above 10 microg ml(-1) (LC50 = 20.86 +/- 0.51 microg ml(-1) and p-sigmoidal slope = 19.88 +/- 10.11). Phagocytic and microbicidal capacities were decreased by 60 and 82%, respectively. Substantial increases in total-/Mn-SOD, catalase, glutathione peroxidase and glutathione reductase activities (by 61, 15, 87, 245 and 70%, respectively) matched the oxidative injury obtained in TBARS (2.5-fold higher) and protein thiol (54% lower). Diminished productions of superoxide by 18% and hydrogen peroxide by 29% were observed in association to exacerbated calcium (27%) and nitric oxide (63%) levels. The data indicate that phenanthrene might be associated with substantial reduction in human neutrophil functions due to severe intracellular redox imbalances.
Collapse
Affiliation(s)
- M H P Buttignol
- Postgraduate Program, Health Sciences, CBS, Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil
| | | | | | | | | |
Collapse
|
13
|
Dos Santos PM, Freitas FP, Mendes J, Tararthuch AL, Fernandez R. Differential regulation of H+-ATPases in MDCK-C11 cells by aldosterone and vasopressin. Can J Physiol Pharmacol 2009; 87:653-65. [DOI: 10.1139/y09-057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the present work was to characterize the biochemical activity of the proton pumps present in the C11 clone of Madin–Darby canine kidney (MDCK) cells, akin to intercalated cells of the collecting duct, as well as to study their regulation by hormones like aldosterone and vasopressin. MDCK-C11 cells from passages 78 to 86 were utilized. The reaction to determine H+-ATPase activity was started by addition of cell homogenates to tubes contained the assay medium. The inorganic phosphate (Pi) released was determined by a colorimetric method modified from that described by Fiske and Subbarow. Changes in intracellular calcium concentration in the cells was determined using the Ca2+-sensing dye fluo-4 AM. Homogenates of MDCK-C11 cells present a bafilomycin-sensitive activity (vacuolar H+-ATPase), and a vanadate-sensitive activity (H+/K+-ATPase). The bafilomycin-sensitive activity showed a pH optimum of 6.12. ATPase activity was also stimulated in a dose-dependent fashion as K+ concentration was increased between 0 and 50 mmol·L–1, with an apparent Km for the release of Pi of 0.13 mmol·L–1 and Vmax of 22.01 nmol·mg–1·min–1. Incubation of cell monolayers with 10−8 mol·L–1 aldosterone for 24 h significantly increased vacuolar H+-ATPase activity, an effect prevented by 10−5 mol·L–1 spironolactone. Vacuolar H+-ATPase activity was also stimulated by 10−11 mol·L–1 vasopressin, an effect prevented by a V1 receptor-specific antagonist. This dose of vasopressin determined a sustained rise of cytosolic ionized calcium. We conclude that (i) homogenates of MDCK-C11 cells present a bafilomycin-sensitive (H+-ATPase) activity and a vanadate-sensitive (H+/K+-ATPase) activity, and (ii) vacuolar H+-ATPase activity is activated by aldosterone through a genomic pathway and by vasopressin through V1 receptors.
Collapse
Affiliation(s)
- Priscilla M.C. Dos Santos
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Fabio P. Freitas
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Jeane Mendes
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ana Lucia Tararthuch
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ricardo Fernandez
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| |
Collapse
|
14
|
Pergher PS, Leite-Dellova D, de Mello-Aires M. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am J Physiol Renal Physiol 2009; 296:F1185-93. [DOI: 10.1152/ajprenal.90217.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The direct action of aldosterone (10−12 M) on net bicarbonate reabsorption ( JHCO3−) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in JHCO3− from a mean control value of 2.84 ± 0.08 [49/19 ( n° of measurements/ n° of tubules)] to 4.20 ± 0.15 nmol·cm−2·s−1 (58/10). Aldosterone perfused into peritubular capillaries also increased JHCO3−, compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca2+]i), monitored fluorometrically. In the presence of ethanol (in similar concentration used to prepare the hormonal solution), spironolactone (10−6 M, a mineralocorticoid receptor antagonist), actinomycin D (10−6 M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the JHCO3− and the [Ca2+]i were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. However, in the presence of RU 486 alone [10−6 M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on JHCO3− and on [Ca2+]i was observed; this antagonist also inhibited the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. These studies indicate that luminal or peritubular aldosterone (10−12 M) has a direct nongenomic stimulatory effect on JHCO3− and on [Ca2+]i in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates JHCO3− in middle proximal tubule.
Collapse
|
15
|
Leite-Dellova DCA, Oliveira-Souza M, Malnic G, Mello-Aires M. Genomic and nongenomic dose-dependent biphasic effect of aldosterone on Na+/H+ exchanger in proximal S3 segment: role of cytosolic calcium. Am J Physiol Renal Physiol 2008; 295:F1342-52. [PMID: 18715944 DOI: 10.1152/ajprenal.00048.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of aldosterone on the intracellular pH recovery rate (pHirr) via Na+/H+ exchanger and on the [Ca2+]i were investigated in isolated rat S3 segment. Aldosterone [10(-12), 10(-10), or 10(-8) M with 1-h, 15- or 2-min preincubation (pi)] caused a dose-dependent increase in the pHirr, but aldosterone (10(-6) M with 1-h, 15- or 2-min pi) decreased it (these effects were prevented by HOE694 but not by S3226). After 1 min of aldosterone pi, there was a transient and dose-dependent increase of the [Ca2+]i and after 6-min pi there was a new increase of [Ca2+]i that persisted after 1 h. Spironolactone, actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min pi) but inhibited the effects of aldosterone (1-h pi) on pHirr and on [Ca2+]i. RU 486 prevented the stimulatory effect of aldosterone (10(-12) M, 15- or 2-min pi) on both parameters and maintained the inhibitory effect of aldosterone (10(-6) M, 15- or 2-min pi) on the pHirr but reversed its stimulatory effect on the [Ca2+]i to an inhibitory effect. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on [Ca2+]i and on the basolateral NHE1 and are compatible with stimulation of the NHE1 by increases in [Ca2+]i in the lower range (at 10(-12) M aldosterone) and inhibition by increases at high levels (at 10(-6) M aldosterone) or decreases in [Ca2+]i (at 10(-6) M aldosterone plus RU 486).
Collapse
Affiliation(s)
- D C A Leite-Dellova
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo 05508-900, Brazil. )
| | | | | | | |
Collapse
|
16
|
Thieme K, Eguti DMN, Mello-Aires M, Oliveira-Souza M. The effect of angiotensin II on intracellular pH is mediated by AT1receptor translocation. Am J Physiol Cell Physiol 2008; 295:C138-45. [DOI: 10.1152/ajpcell.00512.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ANG II on intracellular pH (pHi) recovery rate and AT1receptor translocation was investigated in transfected MDCK cells. The pHirecovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT1) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHirecovery rate of 0.219 ± 0.017 pH U/min ( n = 11). This value was similar to nontransfected cells [0.211 ± 0.009 pH U/min ( n = 12)]. Both values were significantly increased with ANG II (10−9M) but not with ANG II (10−6M). Losartan (10−7M) and dimethyl-BAPTA-AM (10−7M) decreased significantly the stimulatory effect of ANG II (10−9M) and induced an increase in Na+/H+exchanger 1 (NHE-1) activity with ANG II (10−6M). Immunofluorescence studies indicated that in control situation, the hAT1receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10−9M) and internalized with ANG II (10−6M). Losartan (10−7M) induced hAT1translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10−7M) did not change the effect of ANG II (10−9M) on the hAT1receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10−6M). With ionomycin (10−6M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT1receptor and intracellular signaling events related to AT1translocation.
Collapse
|
17
|
Sazonova O, James KA, McCudden CR, Segal D, Talebian A, Wagner GF. Stanniocalcin-1 secretion and receptor regulation in kidney cells. Am J Physiol Renal Physiol 2008; 294:F788-94. [PMID: 18199603 DOI: 10.1152/ajprenal.00553.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney collecting duct principal cells are the main source of stanniocalcin-1 (STC-1) production and secretion. From there, the hormone targets thick ascending limb and distal convoluted tubule cells, as well as collecting duct cells. More specifically, STC-1 targets their mitochondria to exert putative antiapoptotic effects. Two distal tubule cell lines serve as models of STC-1 production and/or mechanism of action. Madin-Darby canine kidney-1 (MDCK-1) cells mimic collecting duct cells in their synthesis of STC-1 ligand and receptor, whereas inner medullary collecting duct-3 (IMCD-3) cells respond to additions of STC-1 by increasing their respiration rate. In the present study, MDCK cell STC-1 secretion was examined under normal and hypertonic conditions, vectorally, and in response to hormones and signal transduction pathway activators/inhibitors. STC-1 receptor regulation was monitored in both cell lines in response to changing ligand concentration. The results showed that NaCl-induced hypertonicity had concentration-dependent stimulatory effects on STC-1 secretion, as did the PKC activator TPA. Calcium and ionomycin were inhibitory, whereas calcium receptor agonists had no effect. Angiotensin II, aldosterone, atrial natriuretic factor, antidiuretic hormone, and forskolin also had no effects. Moreover, STC-1 secretion exhibited no vectoral preference. STC-1 receptors were insensitive to homologous downregulation in both cell lines. In contrast, they were upregulated when STC-1 secretion was inhibited by calcium. The findings suggest that hypertonicity-induced STC-1 secretion is regulated through PKC activation and that high intracellular calcium levels are a potent inhibitor of release. More intriguingly, the results suggest that the receptor may not accompany STC-1 in its passage to the mitochondria.
Collapse
Affiliation(s)
- Olga Sazonova
- Dept. of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Univ. of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
18
|
Carraro-Lacroix LR, Malnic G. Signaling pathways involved with the stimulatory effect of angiotensin II on vacuolar H+-ATPase in proximal tubule cells. Pflugers Arch 2006; 452:728-36. [PMID: 16680484 DOI: 10.1007/s00424-006-0085-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
It has been documented that angiotensin II (ANG II) (10(-9) M) stimulates proton extrusion via H(+)-adenosine triphosphatase (ATPase) in proximal tubule cells. In the present study, we investigated the signaling pathways involved in the effects of ANG II on H(+)-ATPase activity and on the cytosolic free calcium concentration in immortalized rat proximal tubule cells, a permanent cell line derived from rat proximal tubules. The effects of ANG on pH(i) and [Ca(+2)](i) were assessed by the fluorescent probes, 2',7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxy-methyl ester and fluo-4-acetoxy-methyl ester, in the absence of Na(+) to block the Na(+)/H(+) exchanger. In the control situation, the pH recovery rate following intracellular acidification with NH(4)Cl was 0.073+/-0.011 pH units/min (n=12). This recovery was significantly increased with ANG II (10(-9 )M), to 0.12+/-0.015 pH units/min, n=10. This last effect was also followed by a significant increase of Ca(+2) (i), from 99.72+/-1.704 nM (n=21) to 401.23+/-33.91 nM (n=39). The stimulatory effect of ANG II was blocked in the presence of losartan, an angiotensin II subtype 1 (AT(1)) receptor antagonist. H89 [protein kinase A (PKA) inhibitor] plus ANG II had no effect on the pH recovery. Staurosporine [protein kinase C (PKC) inhibitor] impaired the effect of ANG II. Phorbol myristate acetate (PKC activator) mimicked in part the stimulatory effect of ANG II, but reduced Ca(+2) (i). 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (intracellular calcium chelator) alone reduced the pH(i) recovery rate below control levels and impaired the effect of ANG II, in a way similar to that of trimethoxy benzoate (a blocker of Ca(+2) (i) mobilization). We conclude that ANG II regulates rat proximal tubule vacuolar H(+)-ATPase by a PKA-independent mechanism and that PKC and intracellular calcium play a critical role in this regulation.
Collapse
Affiliation(s)
- Luciene Regina Carraro-Lacroix
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, SP, Brazil
| | | |
Collapse
|
19
|
Carraro-Lacroix LR, Ramirez MA, Zorn TMT, Rebouças NA, Malnic G. Increased NHE1 expression is associated with serum deprivation-induced differentiation in immortalized rat proximal tubule cells. Am J Physiol Renal Physiol 2006; 291:F129-39. [PMID: 16495213 DOI: 10.1152/ajprenal.00290.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the proton secretion mechanisms involved with pHi regulation in immortalized rat proximal tubule cells (IRPTC), a SV40-immortalized cell line derived from rat proximal tubule, and characterized the effects of serum deprivation on them. Using pHi measurements with the fluorescent probe BCECF, we demonstrated that the IRPTC express both Na+/H+ exchanger and H+-ATPase, but only NHE1 is modulated by serum deprivation. In these cells, 24 h of serum starvation increased pHi from 7.08+/-0.008 (n=34) to 7.18+/-0.018 (n=33) as well as the pH recovery rate from intracellular acidification with NH4Cl from 0.29+/-0.022 pH U/min (n=14) to 0.50+/-0.024 pH U/min (n=14), without modifying their buffering capacity. These effects were followed by several modifications in morphological features, indicating an increase in differentiation status. The altered activity of NHE1 was consistent with an increase of both transcription and translation of the antiporter, as the utilization of actinomycin D and cycloheximide significantly inhibited the upregulation of NHE1 induced by serum withdrawal. Inhibition of tyrosine phosphorylation by genistein blocked the serum deprivation-dependent activation of NHE. Moreover, the pharmacological inhibition of MEK1/2, the upstream activator of ERK1/2 by UO-126, significantly inhibited the stimulatory effect of serum starvation on Na+/H+ exchanger activity, whereas the putative p38 MAPK inhibitor SB-203580 failed to cause any effect on pHi recovery rates. Our findings indicate that during IRPTC differentiation by serum deprivation, there was a net enhancement of NHE1 activity. This upregulation of NHE by serum removal was consistent with an increase of RNA and protein synthesis of the exchanger, which depends on tyrosine kinase phosphorylation and ERK pathway activation.
Collapse
Affiliation(s)
- Luciene Regina Carraro-Lacroix
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
20
|
Musa-Aziz R, Oliveira-Souza M, Mello-Aires M. Signaling pathways in the biphasic effect of ANG II on Na+/H+ exchanger in T84 cells. J Membr Biol 2006; 205:49-60. [PMID: 16283585 DOI: 10.1007/s00232-005-0762-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 05/31/2005] [Indexed: 11/26/2022]
Abstract
The effect of ANG II on pH(i), [Ca(2+)](i) and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pH(i) via the Na(+)/H(+) exchanger was examined in the first 2 min following the acidification of pH(i) with a NH(4)Cl pulse. In the control situation, the pH(i) recovery rate was 0.118 +/- 0.001 (n = 52) pH units/min and ANG II (10(-12) M or 10(-9) M) increased this value (by 106% or 32%, respectively) but ANG II (10(-7) M) decreased it to 47%. The control [Ca(2+)](i) was 99 +/- 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pH(i) recovery and [Ca(2+)](i). To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na(+)/H(+) exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10(-12) - 10(-7) M ANG II) and by increases of [Ca(2+)](i) in the lower range (at 10(-12) M ANG II) and 2) inhibition of the exchanger at high [Ca(2+)](i) levels (at 10(-9) - 10(-7) M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.
Collapse
Affiliation(s)
- R Musa-Aziz
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | |
Collapse
|
21
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Oliveira-Souza M, Musa-Aziz R, Malnic G, De Mello Aires M. Arginine vasopressin stimulates H+-ATPase in MDCK cells via V1 (cell Ca2+) and V2 (cAMP) receptors. Am J Physiol Renal Physiol 2004; 286:F402-8. [PMID: 12965889 DOI: 10.1152/ajprenal.00121.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of arginine vasopressin (AVP) and/or atrial natriuretic peptide (ANP) on the regulation of intracellular pH (pHi) via H+-ATPase and of cytosolic calcium ([Ca2+]i) was investigated in Madin-Darby canine kidney (MDCK) cells by the fluorescent probes BCECF-AM and fluo-4-AM, respectively. The pHi recovery rate was examined after intracellular acidification following an NH4Cl pulse, in the presence of zero Na+ plus Schering 28080 (a specific inhibitor of H+-K+-ATPase). AVP (10-12-10-6 M) increased the rate of pHi recovery and [Ca2+]i in a dose-dependent manner. V1- or V2-receptor antagonists impaired the effect of AVP on both processes, and DDAVP (10-12-10-6 M; a V2-selective agonist) caused a dose-dependent stimulation of them. [Ca2+]i or cAMP (as increased by 10-5 M thapsigargin or 8-BrcAMP, respectively) alone had no effect on H+-ATPase, but their synergic action was necessary to stimulate H+-ATPase. In agreement with these findings, ANP (10-6 M) or dimethyl-BAPTA-AM (5 x 10-5 M), impairing the increase of [Ca2+]i in response to AVP, blocks the stimulatory effect of AVP on H+-ATPase.
Collapse
Affiliation(s)
- Maria Oliveira-Souza
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, Univ. of São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
23
|
Oliveira-Souza M, Malnic G, Mello-Aires M. Atrial natriuretic peptide impairs the stimulatory effect of angiotensin II on H+-ATPase. Kidney Int 2002; 62:1693-9. [PMID: 12371969 DOI: 10.1046/j.1523-1755.2002.00604.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) action on H+-ATPase is not clearly defined, and may vary with renal tubule segment and hormonal doses being studied. Since an increase of cytosolic calcium ([Ca2+]i) can stimulate acid vesicle movement and exocytotic insertion of proton pumps, and it has been shown that Ang II increases [Ca2+]i while atrial natriuretic peptide (ANP) reduces it, there may be some interaction between Ang II and ANP in the regulation of intracellular pH (pHi) mediated by H+-ATPase. METHODS The effects of Ang II and/or ANP on the regulation of pHi via H+-ATPase and of [Ca2+]i was investigated in Madin-Darby canine kidney cells (MDCK) by the fluorescent probes BCECF-AM and Fluo-4/AM, respectively. The pHi recovery rate was examined following the intracellular acidification after an NH4Cl pulse, in presence of zero Na+ plus Schering 28080, which is a specific inhibitor of H+/K+-ATPase. RESULTS Ang II (10-12, 10-9 or 10-7 mol/L) increased the rate of pHi recovery and [Ca2+]i in a dose-dependent manner. ANP (10-6 mol/L) or dimethyl-BAPTA/AM (5 x 10-5 mol/L, an intracellular calcium chelator) did not affect the pHi recovery but decreased [Ca2+]i and blocked the stimulatory effect of Ang II on the pHi recovery. CONCLUSIONS The results suggest that the increase of [Ca2+]i regulates the dose-dependent stimulatory effect of Ang II on H+-ATPase. ANP or dimethyl-BAPTA/AM, by impairing the path causing the increase in [Ca2+]i, blocks this stimulatory effect of Ang II.
Collapse
Affiliation(s)
- Maria Oliveira-Souza
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Musa-Aziz R, Barreto-Chaves MLM, De Mello-Aires M. Peritubular AVP regulates bicarbonate reabsorption in cortical distal tubule via V(1) and V(2) receptors. Am J Physiol Renal Physiol 2002; 282:F256-64. [PMID: 11788439 DOI: 10.1152/ajprenal.00056.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peritubular arginine vasopressin (AVP) regulates bicarbonate reabsorption in the cortical distal tubule via V(1) and V(2) receptors. The dose-dependent effects of peritubular AVP on net bicarbonate reabsorption (J(HCO)) were evaluated by stationary microperfusion of in vivo early (ED; distal convoluted tubule) and late distal (LD; connecting tubule and initial collecting duct) segments of rat kidney, using double-barreled H(+)-sensitive, ion-exchange resin/reference (1 M KCl) microelectrodes. AVP (10(-11) M) perfused into peritubular capillaries increased J(HCO), compared with basal levels during intact capillary perfusion with blood, in ED and LD segments. AVP (10(-9) M) also increased J(HCO) in both segments, but the effect of AVP (10(-11) M) was significantly higher. A specificV(1)-receptor antagonist alone or with AVP (10(-11) or 10(-9) M) reduced J(HCO) below basal levels. A specific V(2)-receptor antagonist alone or plus AVP (10(-11) M) did not affect J(HCO) but increased AVP (10(-9) M)-mediated stimulation. 8-Bromoadenosine 3',5'-cyclic monophosphate alone reduced J(HCO) below basal levels and also reduced AVP (10(-11) M)-mediated stimulation. (Deamino-Cys(1), D-Arg(8)) vasopressin (a V(2)-selective agonist) also reduced J(HCO) below basal levels. These results show that peritubular AVP stimulates J(HCO) in ED and LD segments via basolateral V(1) receptors and that basolateral V(2) receptors have a dose-dependent inhibitory effect mediated by cAMP. The data also indicate that endogenous AVP stimulates distal J(HCO) via basolateral V(1) receptors.
Collapse
Affiliation(s)
- Raif Musa-Aziz
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | |
Collapse
|