1
|
Kim HJ, Jung CY, Kim HW, Park JT, Yoo TH, Kang SW, Park SK, Kim YH, Sung SA, Hyun YY, Oh KH, Han SH. Proteinuria Modifies the Relationship Between Urinary Sodium Excretion and Adverse Kidney Outcomes: Findings From KNOW-CKD. Kidney Int Rep 2023; 8:1022-1033. [PMID: 37180512 PMCID: PMC10166734 DOI: 10.1016/j.ekir.2023.02.1078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction High sodium intake is associated with increased proteinuria. Herein, we investigated whether proteinuria could modify the association between urinary sodium excretion and adverse kidney outcomes in patients with chronic kidney disease (CKD). Methods In this prospective observational cohort study, we included 967 participants with CKD stages G1 to G5 between 2011 and 2016, who measured 24-hour urinary sodium and protein excretion at baseline. The main predictors were urinary sodium and protein excretion levels. The primary outcome was CKD progression, which was defined as a ≥50% decline in the estimated glomerular filtration rate (eGFR) or the onset of kidney replacement therapy. Results During a median follow-up period of 4.1 years, the primary outcome events occurred in 287 participants (29.7%). There was a significant interaction between proteinuria and sodium excretion for the primary outcome (P = 0.006). In patients with proteinuria of <0.5 g/d, sodium excretion was not associated with the primary outcome. However, in patients with proteinuria of ≥0.5 g/d, a 1.0 g/d increase in sodium excretion was associated with a 29% higher risk of adverse kidney outcomes. Moreover, in patients with proteinuria of ≥0.5 g/d, the hazard ratios (HRs) (95% confidence intervals[CIs]) for sodium excretion of <3.4 and ≥3.4 g/d were 2.32 (1.50-3.58) and 5.71 (3.58-9.11), respectively, compared with HRs for patients with proteinuria of <0.5 g/d and sodium excretion of <3.4 g/d. In sensitivity analysis with 2 averaged values of sodium and protein excretion at baseline and third year, the results were similar. Conclusion Higher urinary sodium excretion was more strongly associated with an increased risk of adverse kidney outcomes in patients with higher proteinuria levels.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chan-Young Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Woo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Su Ah Sung
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Kidney Disease Research, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhao K, Mao Y, Ye X, Ma J, Sun L, Li P, Li Y. MicroRNA-210-5p alleviates cardiac fibrosis via targeting transforming growth factor-beta type I receptor in rats on high sodium chloride (NaCl)-based diet. Eur J Pharmacol 2021; 912:174587. [PMID: 34678242 DOI: 10.1016/j.ejphar.2021.174587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The present study was designed to explore whether high sodium chloride (NaCl)-based diet (HSD) caused cardiac fibrosis regardless of blood pressure in Sprague-Dawley (SD) rats, and to further determine the effects and the underlying mechanisms of microRNA (miR)-210-5p on HSD-induced cardiac fibrosis in rats or NaCl-induced cardiac fibroblast activation in neonatal rat cardiac fibroblasts (NRCFs). The SD rats received 8% HSD, and NRCFs were treated with NaCl. The levels of collagen I, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) were increased in the heart of hypertension (HTN), hypertension-prone (HP) and hypertension-resistant (HR) rats on HSD in vivo. NaCl increased the levels of collagen I, α-SMA and TGF-β1 in NRCFs in vitro. The level of miR-210-5p was reduced in both NBD-induced rats' hearts and NaCl-treated NRCFs, which was consistent with the results of miR high-throughput sequencing in NRCFs. The HSD or NaCl-induced increases of collagen I, α-SMA and TGF-β1 were inhibited by miR-210-5p agomiR in vitro and in vivo, respectively. miR-210-5p antagomiR could mimic the pathological effects of NaCl in NRCFS. Bioinformatics analysis and luciferase reporter assays demonstrated that TGF-β type I receptor (TGFBR1) was a direct target gene of miR-210-5p. These results indicated that HSD resulted in cardiac fibrosis regardless of blood pressure. The upregulation of miR-210-5p could attenuate cardiac fibroblast activation in NRCFS via targeting TGFBR1. Thus, upregulating miR-210-5p might be a strategy for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoman Ye
- Intensive Care Unit, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiazheng Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Construction of a Nanosensor for Non-Invasive Imaging of Hydrogen Peroxide Levels in Living Cells. BIOLOGY 2020; 9:biology9120430. [PMID: 33260458 PMCID: PMC7760702 DOI: 10.3390/biology9120430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary Spatially and temporally defined H2O2 signatures are essential parts of various signaling pathways. Therefore, monitoring H2O2 dynamics with high spatio–temporal resolution is significantly important to understand how this ubiquitous signaling molecule can control diverse cellular responses. In this study, we designed and characterized a Fluorescence Resonance Energy Transfer (FRET)-based genetically encoded H2O2 sensor that provides a powerful tool to monitor the spatio–temporal dynamics of H2O2 fluxes. We have used this sensor to monitor the flux of H2O2 in live cells under stress conditions. Using this sensor, real-time information of the H2O2 level can be obtained non-invasively and would help to understand the adverse effect of H2O2 on cell physiology and its role in redox signaling. Abstract Hydrogen peroxide (H2O2) serves fundamental regulatory functions in metabolism beyond the role as damage signal. During stress conditions, the level of H2O2 increases in the cells and causes oxidative stress, which interferes with normal cell growth in plants and animals. The H2O2 also acts as a central signaling molecule and regulates numerous pathways in living cells. To better understand the generation of H2O2 in environmental responses and its role in cellular signaling, there is a need to study the flux of H2O2 at high spatio–temporal resolution in a real-time fashion. Herein, we developed a genetically encoded Fluorescence Resonance Energy Transfer (FRET)-based nanosensor (FLIP-H2O2) by sandwiching the regulatory domain (RD) of OxyR between two fluorescent moieties, namely ECFP and mVenus. This nanosensor was pH stable, highly selective to H2O2, and showed insensitivity to other oxidants like superoxide anions, nitric oxide, and peroxynitrite. The FLIP-H2O2 demonstrated a broad dynamic range and having a binding affinity (Kd) of 247 µM. Expression of sensor protein in living bacterial, yeast, and mammalian cells showed the localization of the sensor in the cytosol. The flux of H2O2 was measured in these live cells using the FLIP-H2O2 under stress conditions or by externally providing the ligand. Time-dependent FRET-ratio changes were recorded, which correspond to the presence of H2O2. Using this sensor, real-time information of the H2O2 level can be obtained non-invasively. Thus, this nanosensor would help to understand the adverse effect of H2O2 on cell physiology and its role in redox signaling.
Collapse
|
4
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|
5
|
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One 2019; 14:e0223300. [PMID: 31574128 PMCID: PMC6773211 DOI: 10.1371/journal.pone.0223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Paczula A, Wiecek A, Piecha G. Cardiotonic Steroids-A Possible Link Between High-Salt Diet and Organ Damage. Int J Mol Sci 2019; 20:ijms20030590. [PMID: 30704040 PMCID: PMC6386955 DOI: 10.3390/ijms20030590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
High dietary salt intake has been listed among the top ten risk factors for disability-adjusted life years. We discuss the role of endogenous cardiotonic steroids in mediating the dietary salt-induced hypertension and organ damage.
Collapse
Affiliation(s)
- Aneta Paczula
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| |
Collapse
|
7
|
Wen Y, Crowley SD. Renal Effects of Cytokines in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:443-454. [PMID: 31399978 DOI: 10.1007/978-981-13-8871-2_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preclinical studies point to a key role for immune cells in hypertension via augmenting renal injury and/or hypertensive responses. Blood pressure elevation in rheumatologic patients is attenuated by anti-inflammatory therapies. Both the innate and adaptive immune systems contribute to the pathogenesis of hypertension by modulating renal sodium balance, blood flow, and functions of the vasculature and epithelial cells in the kidney. Monocytes/macrophages and T lymphocytes are pivotal mediators of hypertensive responses, while dendritic cells and B lymphocytes can regulate blood pressure indirectly by promoting T lymphocytes activation. Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF), interleukin-1 (IL-1), interleukin-17 (IL-17), and interferon-γ (IFN), amplify blood pressure elevation and/or renal injury. By contrast, interleukin-10 (IL-10) protects against renal and vascular function when produced by T helper 2 cells (Th2) and regulatory T cells (Treg). Thus, understanding the renal effects of cytokines in hypertension will provide targets for precise immunotherapies to inhibit targeted organ damage while preserving necessary immunity.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.,Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA.
| |
Collapse
|
8
|
Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β-Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats. Int J Mol Sci 2018; 19:ijms19103168. [PMID: 30326586 PMCID: PMC6214093 DOI: 10.3390/ijms19103168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
High salt (HS) intake stimulates the production of marinobufagenin (MBG), an endogenous steroidal Na/K-ATPase ligand, which activates profibrotic signaling. HS is accompanied by a blood pressure (BP) increase in salt-sensitive hypertension, but not in normotensive animals. Here, we investigated whether HS stimulates MBG production and activates transforming growth factor-beta (TGF-β) profibrotic signaling in young normotensive rats, and whether these changes can be reversed by reducing salt to a normal salt (NS) level. Three-month old male Sprague–Dawley rats received NS for 4 and 8 weeks (0.5% NaCl; NS4 and NS8), or HS for 4 and 8 weeks (4% NaCl; HS4 and HS8), or HS for 4 weeks followed by NS for 4 weeks (HS4/NS4), n = 8/group. Systolic BP (SBP), pulse wave velocity (PWV), MBG excretion, aortic collagen 1α2, collagen 4α1 and TGF-β, Smad2, Smad3, Fli-1 mRNA, and total collagen abundance were measured at baseline (BL), and on weeks 4 and 8. Statistical analysis was performed using one-way ANOVA. SBP was not affected by HS (125 ± 5 and 126 ± 6 vs. 128 ± 7 mmHg, HS4 and HS8 vs. BL, p > 0.05). HS increased MBG (164 ± 19 vs. 103 ± 19 pmol/24 h/kg, HS4 vs. BL, p < 0.05) and PWV (3.7 ± 0.2 vs. 2.7 ± 0.2 m/s, HS4 vs. NS4, p < 0.05). HS8 was associated with a further increase in MBG and PWV, with an increase in aortic Col1a2 80%), Col4a1 (50%), Tgfb1 (30%), Smad2 (30%) and Smad3 (45%) mRNAs, and aortic wall collagen (180%) vs. NS8 (all p < 0.05). NS following HS downregulated HS-induced factors: in HS4/NS4, the MBG level was 91 ± 12 pmol/24 h/kg (twofold lower than HS8, p < 0.01), PWV was 3.7 ± 0.3 vs. 4.7 ± 0.2 m/s (HS4/NS4 vs. HS8, p < 0.05), aortic wall Tgfb1, Col1a2, Col4a1, Smad2, Smad3 mRNAs, and collagen abundance were reversed by salt reduction to the BL levels (p < 0.05). HS was associated with an activation of TGF-β signaling, aortic fibrosis and aortic stiffness accompanied by an MBG increase in the absence of SBP changes in young normotensive rats. The reduction of dietary salt following HS decreased MBG, PWV, aortic wall collagen and TGF-β. Thus, HS-induced aortic stiffness in normotensive animals occurred in the context of elevated MBG, which may activate SMAD-dependent TGF-β pro-fibrotic signaling. This data suggests that a decrease in salt consumption could help to restore aortic elasticity and diminish the risk of cardiovascular disease by reducing the production of the pro-fibrotic factor MBG.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Inflammatory cytokines contribute to the pathogenesis of hypertension through effects on renal blood flow and sodium handling. This review will update recent advances that explore the renal actions of immune cells and cytokines in the pathogenesis of hypertension. RECENT FINDINGS Populations of cells from both the innate and adaptive immune systems contribute to hypertension by modulating functions of the vasculature and epithelial cells in the kidney. Macrophages and T lymphocytes can directly regulate the hypertensive response and consequent target organ damage. Dendritic cells and B lymphocytes can alter blood pressure (BP) indirectly by facilitating T-cell activation. Proinflammatory cytokines, including tumor necrosis factor-α, interleukin 17, interleukin 1, and interferon-γ augment BP and/or renal injury when produced by T helper 1 cells, T helper 17 cells, and macrophages. In contrast, interleukin 10 improves vascular and renal functions in preclinical hypertension studies. The effects of transforming growth factor-β are complex because of its profibrotic and immunosuppressive functions that also depend on the localization and concentration of this pleiotropic cytokine. SUMMARY Preclinical studies point to a key role for cytokines in hypertension via their actions in the kidney. Consistent with this notion, anti-inflammatory therapies can attenuate BP elevation in human patients with rheumatologic disease. Conversely, impaired natriuresis may further polarize both T lymphocytes and macrophages toward a proinflammatory state, in a pathogenic, feed-forward loop of immune activation and BP elevation. Understanding the precise renal actions of cytokines in hypertension will be necessary to inhibit cytokine-dependent hypertensive responses while preserving systemic immunity and tumor surveillance.
Collapse
|
10
|
Abstract
Salt resistance/sensitivity refers specifically to the effect of dietary sodium chloride (salt) intake on BP. Increased dietary salt intake promotes an early and uniform expansion of extracellular fluid volume and increased cardiac output. To compensate for these hemodynamic changes and maintain constant BP in salt resistance, renal and peripheral vascular resistance falls and is associated with an increase in production of nitric oxide. In contrast, the decline in peripheral vascular resistance and the increase in nitric oxide are impaired or absent in salt sensitivity, promoting an increase in BP in these individuals. Endothelial dysfunction may pose a particularly significant risk factor in the development of salt sensitivity and subsequent hypertension. Vulnerable salt-sensitive populations may have in common underlying endothelial dysfunction due to genetic or environmental influences. These individuals may be very sensitive to the hemodynamic stress of increased effective blood volume, setting in motion untoward molecular and biochemical events that lead to overproduction of TGF-β, oxidative stress, and limited bioavailable nitric oxide. Finally, chronic high-salt ingestion produces endothelial dysfunction, even in salt-resistant subjects. Thus, the complex syndrome of salt sensitivity may be a function of the endothelium, which is integrally involved in the vascular responses to high salt intake.
Collapse
Affiliation(s)
| | - Louis J Dell'Italia
- Departments of Medicine and
- Department of Medicine, Veterans Affairs Medical Center, Birmingham, Alabama
| | - Paul W Sanders
- Departments of Medicine and
- Department of Medicine, Veterans Affairs Medical Center, Birmingham, Alabama
- Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
11
|
Jiang S, He H, Tan L, Wang L, Su Z, Liu Y, Zhu H, Zhang M, Hou FF, Li A. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage. Sci Rep 2016; 6:35906. [PMID: 27775022 PMCID: PMC5075906 DOI: 10.1038/srep35906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity.
Collapse
Affiliation(s)
- Shaoling Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanchang He
- The First People's Foshan Hospital, Foshan, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangliang Wang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| | - Zhengxiu Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongguo Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghuan Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
An Expanded View of Progressive Cardiorenal Disorders. Am J Med Sci 2016; 351:626-33. [DOI: 10.1016/j.amjms.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/17/2016] [Indexed: 11/23/2022]
|
13
|
Re RN. Age-Related Macular Degeneration and Intracrine Biology: An Hypothesis. Ochsner J 2016; 16:502-510. [PMID: 27999510 PMCID: PMC5158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
This laboratory has studied the intracellular actions of angiotensin II and other signaling proteins that can act in the intracellular space-peptides/proteins we have called intracrines. Moreover, we have suggested that general principles of intracrine action exist and can help explain the progression of some chronic degenerative diseases such as diabetic nephropathy and congestive heart failure. Here, a similar analysis is carried out in the case of age-related macular degeneration. We propose that intracrine mechanisms are operative in this disorder. In particular, we hypothesize that intracrine loops involving renin, angiotensin II, transforming growth factor-beta, vascular endothelial growth factor, bone morphogenetic protein-4, and p53, among other factors, are involved. If this analysis is correct, it suggests a commonality of mechanism linking chronic progressive renal diseases, congestive heart failure, and macular degeneration.
Collapse
Affiliation(s)
- Richard N. Re
- Division of Academics–Research, Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
14
|
Feng W, Ying WZ, Aaron KJ, Sanders PW. Transforming growth factor-β mediates endothelial dysfunction in rats during high salt intake. Am J Physiol Renal Physiol 2015; 309:F1018-25. [PMID: 26447221 DOI: 10.1152/ajprenal.00328.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
Endothelial dysfunction has been shown to be predictive of subsequent cardiovascular events and death. Through a mechanism that is incompletely understood, increased dietary salt intake promotes endothelial dysfunction in healthy, salt-resistant humans. The present study tested the hypothesis that dietary salt-induced transforming growth factor (TGF)-β promoted endothelial dysfunction and salt-dependent changes in blood pressure (BP). Sprague-Dawley rats that received diets containing 0.3% NaCl [low salt (LS)] or 8.0% NaCl [high salt (HS)] were treated with vehicle or SB-525334, a specific inhibitor of TGF-β receptor I/activin receptor-like kinase 5, beginning on day 5. BP was monitored using radiotelemetry in four groups of rats (LS, LS + SB-525334, HS, and HS + SB-525334) for up to 14 days. By day 14 of the study, mean daytime systolic BP and mean pulse pressure of the HS group treated with vehicle was greater than those in the other three groups; mean daytime systolic BP and pulse pressure of the HS + SB-525334 group did not differ from the LS and LS + SB-525334-treated groups. Whereas mean systolic BP, mean diastolic BP, and mean arterial pressure did not differ among the groups on the seventh day of the study, endothelium-dependent vasorelaxation was impaired specifically in the HS group; treatment with the activin receptor-like kinase 5 inhibitor prevented the dietary HS intake-induced increases in phospho-Smad2 (Ser(465/467)) and NADPH oxidase-4 in endothelial lysates and normalized endothelial function. These findings suggest that HS-induced endothelial dysfunction and the development of salt-dependent increases in BP were related to endothelial TGF-β signaling.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristal J Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
Abstract
More is known about the epidemiology of drug-resistant hypertension than particular pathogenic factors and pathways. Several recurring themes, however, seem evident on using insight from epidemiology and general knowledge of the pathophysiology of hypertension. Specifically, 4 main pathways converge on drug resistance including sodium handling, sympathetic nervous system activation, endothelial dysfunction, and arterial stiffness. These factors, and the various pathways and elements contributing to them, are reviewed. In addition to describing how these factors exert their individual influences on resistant hypertension, several examples of how interactions between these factors, particularly in the case of chronic kidney disease, are included. At the conclusion of this review some thoughts are offered on additional mechanisms and areas for potential research.
Collapse
|
16
|
Della Penna SL, Rosón MI, Toblli JE, Fernández BE. Role of angiotensin II and oxidative stress in renal inflammation by hypernatremia: Benefits of atrial natriuretic peptide, losartan, and tempol. Free Radic Res 2015; 49:383-96. [DOI: 10.3109/10715762.2015.1006216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Sundstrom B, Johansson I, Rantapaa-Dahlqvist S. Interaction between dietary sodium and smoking increases the risk for rheumatoid arthritis: results from a nested case-control study. Rheumatology (Oxford) 2014; 54:487-93. [DOI: 10.1093/rheumatology/keu330] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Ahn SY, Kim S, Kim DK, Park JH, Shin SJ, Lee SH, Choi BS, Lim CS, Kim S, Chin HJ. Urinary sodium excretion has positive correlation with activation of urinary renin angiotensin system and reactive oxygen species in hypertensive chronic kidney disease. J Korean Med Sci 2014; 29 Suppl 2:S123-30. [PMID: 25317016 PMCID: PMC4194282 DOI: 10.3346/jkms.2014.29.s2.s123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/26/2014] [Indexed: 01/13/2023] Open
Abstract
It is not well described the pathophysiology of renal injuries caused by a high salt intake in humans. The authors analyzed the relationship between the 24-hr urine sodium-to-creatinine ratio (24HUna/cr) and renal injury parameters such as urine angiotensinogen (uAGT/cr), monocyte chemoattractant peptide-1 (uMCP1/cr), and malondialdehyde-to-creatinine ratio (uMDA/cr) by using the data derived from 226 hypertensive chronic kidney disease patients. At baseline, the 24HUna/cr group or levels had a positive correlation with uAGT/cr and uMDA/cr adjusted for related factors (P<0.001 for each analysis). When we estimated uAGT/cr in the 24HUna/cr groups by ANCOVA, the uAGT/cr in patients with ≥200 mEq/g cr was higher than in patients with <100 mEq/g cr (708 [95% CI, 448-967] vs. 334 [95% CI, 184-483] pg/mg cr, P=0.014). Similarly, uMDA/cr was estimated as 0.17 (95% CI, 0.14-0.21) pM/mg cr in patients with <100 mEq/g cr and 0.27 (95% CI, 0.20-0.33) pM/mg cr in patients with ≥200 mEq/g cr (P=0.016). During the 16-week follow-up period, an increase in urinary sodium excretion predicted an increase in urinary angiotensinogen excretion. In conclusion, high salt intake increases renal renin-angiotensin-system (RAS) activation, primarily, and directly or indirectly affects the production of reactive oxygen species through renal RAS activation.
Collapse
Affiliation(s)
- Shin-Young Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Immunology, Seoul National University Postgraduate School, Seoul, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Sung Joon Shin
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Sang Ho Lee
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Bum Soon Choi
- Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Suhnggwon Kim
- Research Institute of Salt and Health, Seoul, Korea
- Seoul K-Clinic, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Immunology, Seoul National University Postgraduate School, Seoul, Korea
| |
Collapse
|
19
|
Ying WZ, Aaron KJ, Sanders PW. Sodium and potassium regulate endothelial phospholipase C-γ and Bmx. Am J Physiol Renal Physiol 2014; 307:F58-63. [PMID: 24785188 DOI: 10.1152/ajprenal.00615.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The amount of Na(+) and K(+) in the diet promotes significant changes in endothelial cell function. In the present study, a series of in vitro and in vivo experiments determined the role of Na(+) and K(+) in the regulation of two pleckstrin homology domain-containing intracellular signaling molecules, phospholipase C (PLC)-γ1 and epithelial and endothelial tyrosine kinase/bone marrow tyrosine kinase on chromosome X (Bmx), and agonist-generated Ca(2+) signaling in the endothelium. Extracellular K(+) concentration regulated the levels of activated PLC-γ1, Bmx, and carbachol-stimulated intracellular Ca(2+) mobilization in human endothelial cells. Additional experiments confirmed that high-conductance Ca(2+)-activated K(+) channels and phosphatidylinositol 3-kinase mediated these effects. The content of Na(+) and K(+) in the diet also regulated Bmx levels in endothelial cells and activated PLC-γ1 levels in rats in vivo. The effects of dietary K(+) on Bmx were more pronounced in rats fed a high-salt diet compared with rats fed a low-salt diet. These experiments elucidated an endothelial cell signaling mechanism regulated by electrolytes, further demonstrating an integral relationship between endothelial cell function and dietary Na(+) and K(+) content.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Kristal J Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
20
|
Matsuki K, Hathaway CK, Lawrence MG, Smithies O, Kakoki M. The role of transforming growth factor β1 in the regulation of blood pressure. Curr Hypertens Rev 2014; 10:223-38. [PMID: 25801626 PMCID: PMC4842018 DOI: 10.2174/157340211004150319123313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/21/2023]
Abstract
Although human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1. Of note, the 10% hypomorph exhibits primary aldosteronism and markedly impaired urinary excretion of water and electrolytes. We here review previous literature highlighting the importance of TGFβ signaling as a natriuretic system, which we postulate is a causative mechanism explaining how polymorphisms in TGFβ1 could influence blood pressure levels.
Collapse
Affiliation(s)
| | | | | | | | - Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB #7525, 701 Brinkhous-Bullitt Building, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
21
|
Ying WZ, Aaron KJ, Sanders PW. Transforming growth factor-β regulates endothelial function during high salt intake in rats. Hypertension 2013; 62:951-6. [PMID: 24041947 DOI: 10.1161/hypertensionaha.113.01835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have demonstrated that an increase in dietary NaCl (salt) intake stimulated endothelial cells to produce transforming growth factor-β (TGF-β). The intent of the present study was to determine the functional significance of increased TGF-β on endothelial cell function. Young Sprague-Dawley rats were fed diets containing 0.3 or 8.0% NaCl for 2 days before treatment with a specific inhibitor of the TGF-β receptor I/activin receptor-like kinase 5 kinase, or vehicle for another 2 days. At day 4 of study, endothelial phosphorylated Smad2 (S465/467) increased and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) levels decreased in the high-salt-treated rats. In addition, phosphorylated Akt (S473) and phosphorylation of the endothelial isoform of NO synthase (NOS3) at S1177 increased. Treatment with the TGF-β receptor I/activin receptor-like kinase 5 inhibitor reduced Smad2 phosphorylation to levels observed in rats on the low-salt diet and prevented the downstream signaling events induced by the high-salt diet. In human umbilical vein endothelial cells, reduction in PTEN levels increased phosphorylated Akt and NOS3. Treatment of macrovascular endothelial cells with TGF-β1 increased phosphorylated NOS3 and the concentration of NO metabolites in the medium but had no effect on either of these variables in cells pretreated with small interfering RNA directed against PTEN. Thus, during high salt intake, an increase in TGF-β directly promoted a reduction in endothelial PTEN levels, which in turn regulated Akt activation and NOS3 phosphorylation. This effect closes a feedback loop that potentially mitigates the effect of TGF-β on the vasculature.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology/Department of Medicine, 642 Lyons-Harrison Research Bldg, 1530 Third Ave, South, University of Alabama at Birmingham, Birmingham, AL 35294-0007.
| | | | | |
Collapse
|
22
|
Kanbay M, Bayram Y, Solak Y, Sanders PW. Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2013; 7:395-400. [PMID: 23735420 PMCID: PMC4083820 DOI: 10.1016/j.jash.2013.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
23
|
Chen CCA, Geurts AM, Jacob HJ, Fan F, Roman RJ. Heterozygous knockout of transforming growth factor-β1 protects Dahl S rats against high salt-induced renal injury. Physiol Genomics 2012; 45:110-8. [PMID: 23249995 DOI: 10.1152/physiolgenomics.00119.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study employed a zinc-finger nuclease strategy to create heterozygous knockout (KO) rats for the transforming growth factor-β1 (Tgfb1) gene on the Dahl SS/Jr genetic background (TGF-β1(+/-) Dahl S). Intercrossing TGF-β1(+/-) rats did not produce any homozygous KO rats (66.4% +/-, 33.6% +/+), indicating that the mutation is embryonic lethal. Six-week-old wild-type (WT) littermates and TGF-β1(+/-) Dahl S rats were fed a 0.4% (low salt, LS) or 8% NaCl (high salt, HS) diet for 5 wk. Renal cortical expression of TGF-β1, urinary TGF-β1 excretion, proteinuria, glomerular injury and tubulointerstitial fibrosis, and systolic blood pressure were similar in WT and TGF-β1(+/-) Dahl S rats maintained on the LS diet. The expression and urinary excretion of TGF-β1 increased to a greater extent in WT than in TGF-β1(+/-)Dahl S rats fed an HS diet for 1 wk. Systolic blood pressure rose by the same extent to 235 ± 2 mmHg in WT and 239 ± 4 mmHg in TGF-β1(+/-) Dahl S rats fed a HS diet for 5 wk. However, urinary protein excretion was significantly lower in TGF-β1(+/-) Dahl S than in the WT animals. The degree of glomerular injury and renal cortical and outer medullary fibrosis was markedly less in TGF-β1(+/-) than in WT rats. These findings suggest that the loss of one copy of the TGF-β1 gene blunts the increase in renal TGF-β1 protein expression and slows the progression of proteinuria, glomerulosclerosis, and renal interstitial fibrosis in Dahl S rats fed an HS diet independently of changes in blood pressure.
Collapse
Affiliation(s)
- Chun Cheng Andy Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39211, USA
| | | | | | | | | |
Collapse
|
24
|
Ying WZ, Aaron KJ, Sanders PW. Effect of aging and dietary salt and potassium intake on endothelial PTEN (Phosphatase and tensin homolog on chromosome 10) function. PLoS One 2012; 7:e48715. [PMID: 23144940 PMCID: PMC3492426 DOI: 10.1371/journal.pone.0048715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/28/2012] [Indexed: 11/19/2022] Open
Abstract
Aging promotes endothelial dysfunction, defined as a reduction in bioavailable nitric oxide (NO) produced by the endothelial isoform of nitric oxide synthase (NOS3). This enzyme is critically regulated by phosphorylation by protein kinase B (Akt), which in turn is regulated by the lipid phosphatase, PTEN. The present series of studies demonstrated a reduction in bioavailable NO as the age of rats increased from 1 to 12 months. At 12 months of age, rats no longer demonstrated increases in phosphorylated NOS3 in response to high dietary salt intake. Endothelial cell levels of PTEN increased with age and became refractory to change with increased salt intake. In contrast to the reduction in NO production, endothelial cell production of transforming growth factor-ß (TGF-ß) relative to NO increased progressively with age. In macrovascular endothelial cells, PTEN was regulated in a dose-dependent fashion by TGF-ß, which was further regulated by extracellular [KCl]. When combined with prior studies, the present series of experiments suggested an integral role for PTEN in endothelial cell pathobiology of aging and an important mitigating function of TGF-ß in endothelial PTEN regulation. The findings further supported a role for diet in affecting vascular function through the production of TGF-ß and NO.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kristal J. Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul W. Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
25
|
Dietary salt intake is related to inflammation and albuminuria in primary hypertensive patients. Eur J Clin Nutr 2012; 66:1214-8. [PMID: 22909578 DOI: 10.1038/ejcn.2012.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND/OBJECTIVES In this study, we hypothesized that dietary salt intake may be related with inflammation and albuminuria independently from blood pressure (BP) in non-diabetic hypertensive patients. SUBJECTS/METHODS A total of 224 patients with primary hypertension were included in the study. Serum C-reactive protein (CRP) levels, 24-h urine sodium and albumin excretion were measured in all patients. The subjects were divided into tertiles according to the level of 24-h urinary sodium excretion: low-salt-intake group (n = 76, mean urine sodium: 111.7 ± 29.1 mmol/24 h), medium-salt-intake group (n = 77, mean urine sodium: 166.1 ± 16.3 mmol/24 h) and high-salt-intake group (n = 71, mean urine sodium: 263.6 ± 68.3 mmol/24 h). RESULTS Systolic and diastolic BP measurements of patients were similar in the three salt-intake groups. CRP and urinary albumin levels were significantly higher in high-salt-intake group compared with medium- and low-salt-intake groups (P = 0.0003 and P = 0.001, respectively). CRP was positively correlated with 24-h urinary sodium excretion (r = 0.28, P = 0.0008) and albuminuria, whereas albuminuria was positively correlated with 24-h urinary sodium excretion (r = 0.21, P = 0.0002). Multiple regression analysis revealed that urinary sodium excretion was an independent predictor of both CRP and albuminuria. CONCLUSIONS These findings suggest that high salt intake is associated with enhanced inflammation and target organ damage reflected by increased albuminuria in treated hypertensive patients independent of any BP effect.
Collapse
|
26
|
Abstract
Dietary sodium chloride (salt) has long been considered injurious to the kidney by promoting the development of glomerular and tubulointerstitial fibrosis. Endothelial cells throughout the vasculature and glomeruli respond to increased dietary salt intake with increased production of transforming growth factor-β (TGF-β) and nitric oxide. High-salt intake activates large-conductance, voltage- and calcium-activated potassium (BK(Ca)) channels in endothelial cells. Activation of BK(Ca) channels promotes signaling through proline-rich tyrosine kinase-2, cellular-sarcoma (c-Src), Akt (also known as protein kinase B), and mitogen-activated protein kinase pathways that lead to endothelial production of TGF-β and nitric oxide. TGF-β signaling is broadly accepted as a strong stimulator of renal fibrosis. The classic description of TGF-β signaling pathology in renal disease involves signaling through Smad proteins resulting in extracellular matrix deposition and fibrosis. Active TGF-β1 also causes fibrosis by inducing epithelial-mesenchymal transition and apoptosis. By enhancing TGF-β signaling, increased dietary salt intake leads to progressive renal failure from nephron loss and glomerular and tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Michael B Hovater
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
27
|
Murphy SR, Dahly-Vernon AJ, Dunn KMJ, Chen CCA, Ledbetter SR, Williams JM, Roman RJ. Renoprotective effects of anti-TGF-β antibody and antihypertensive therapies in Dahl S rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R57-69. [PMID: 22538513 DOI: 10.1152/ajpregu.00263.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study examined the effects of anti-TGF-β antibody (1D11) therapy in Dahl S (S) rats fed a 4% NaCl diet. Baseline renal expression of TGF-β1 and the degree of injury were lower in female than male S rats maintained on a 0.4% NaCl diet. 4% NaCl diet increased mean arterial pressure (MAP), proteinuria, and renal injury to the same extent in both male and female S rats. Chronic treatment with 1D11 had renoprotective effects in both sexes. The ability of 1D11 to oppose the development of proteinuria when given alone or in combination with antihypertensive agents was further studied in 6-wk-old female S rats, since baseline renal injury was less than that seen in male rats. 1D11, diltiazem, and hydrochlorothiazide (HCT) attenuated the development of hypertension, proteinuria, and glomerular injury. 1D11 had no additional effect when given in combination with these antihypertensive agents. We also explored whether 1D11 could reverse renal injury in 9-wk-old male S rats with preexisting renal injury. MAP increased to 197 ± 4 mmHg and proteinuria rose to >300 mg/day after 3 wk on a 4% NaCl diet. Proteinuria was reduced by 30-40% in rats treated with 1D11, HCT, or captopril + 1D11, but the protective effect was lost in rats fed the 4% NaCl diet for 6 wk. Nevertheless, 1D11, HCT, and captopril + 1D11 still reduced renomedullary and cardiac fibrosis. These results indicate that anti-TGF-β antibody therapy reduces renal and cardiac fibrosis and affords additional renoprotection when given in combination with various antihypertensive agents in Dahl S rats.
Collapse
Affiliation(s)
- Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39211, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Piecha G, Koleganova N, Ritz E, Müller A, Fedorova OV, Bagrov AY, Lutz D, Schirmacher P, Gross-Weissmann ML. High salt intake causes adverse fetal programming--vascular effects beyond blood pressure. Nephrol Dial Transplant 2012; 27:3464-76. [PMID: 22431707 DOI: 10.1093/ndt/gfs027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND High salt intake causes hypertension, adverse cardiovascular outcomes and potentially also blood pressure (BP)-independent target organ damage. Excess salt intake in pregnancy is known to affect BP in the offspring. The present study was designed to assess whether high salt intake in pregnancy affects BP and vascular morphology in the offspring. METHODS Sprague-Dawley rats were fed a standard rodent diet with low-normal (0.15%) or high (8.0%) salt content during pregnancy and lactation. After weaning at 4 weeks of age, offspring were maintained on the same diet or switched to a high- or low-salt diet, respectively. Vascular geometry was assessed in male offspring at 7 and 12 weeks postnatally. RESULTS Up to 12 weeks of age, there was no significant difference in telemetrically measured BP between the groups of offspring. At 12 weeks of age, wall thickness of central (aorta, carotid), muscular (mesenteric) and intrapulmonary arteries was significantly higher in offspring of mothers on a high-salt diet irrespective of the post-weaning diet. This correlated with increased fibrosis of the aortic wall, more intense nitrotyrosine staining as well as elevated levels of marinobufagenin (MBG) and asymmetric dimethyl arginine (ADMA). CONCLUSIONS High salt intake in pregnant rats has long-lasting effects on the modeling of central and muscular arteries in the offspring independent of postnatal salt intake and BP. Circulating MBG and ADMA and local oxidative stress correlate with the adverse vascular modeling.
Collapse
Affiliation(s)
- Grzegorz Piecha
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jo CH, Kim S, Park JS, Kim GH. Effects of dietary salt restriction on puromycin aminonucleoside nephrosis: preliminary data. Electrolyte Blood Press 2011; 9:55-62. [PMID: 22438857 PMCID: PMC3302907 DOI: 10.5049/ebp.2011.9.2.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
Proteinuria is a major promoter that induces tubulointerstitial injury in glomerulopathy. Dietary salt restriction may reduce proteinuria, although the mechanism is not clear. We investigated the effects of dietary salt restriction on rat kidneys in an animal model of glomerular proteinuria. Male Sprague-Dawley rats were used and divided into 3 groups: vehicle-treated normal-salt controls, puromycin aminonucleoside (PA)-treated normal-salt rats, and PA-treated low-salt rats. PA was given at a dose of 150 mg/kg BW at time 0, followed by 50 mg/kg BW on days 28, 35, and 42. Sodium-deficient rodent diet with and without additional NaCl (0.5%) were provided for normal-salt rats and low-salt rats, respectively. On day 63, kidneys were harvested for histopathologic examination and immunohistochemistry. PA treatment produced overt proteinuria and renal damage. Dietary salt restriction insignificantly reduced proteinuria in PA-treated rats, and PA-treated low-salt rats had lower urine output and lower creatinine clearance than vehicle-treated normal-salt controls. When tubulointerstitial injury was semiquantitatively evaluated, it had a positive correlation with proteinuria. The tubulointerstitial injury score was significantly increased by PA treatment and relieved by low-salt diet. ED1-positive infiltrating cells and immunostaining for interstitial collagen III were significantly increased by PA treatment. These changes appeared to be less common in PA-treated low-salt rats, although the differences in PA-treated normal-salt versus low-salt rats did not reach statistical significance. Our results suggest that renal histopathology in PA nephrosis may potentially be improved by dietary salt restriction. Non-hemodynamic mechanisms induced by low-sodium diet might contribute to renoprotection.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
30
|
The kinase Pyk2 is involved in renal fibrosis by means of mechanical stretch-induced growth factor expression in renal tubules. Kidney Int 2011; 81:449-57. [PMID: 22157654 DOI: 10.1038/ki.2011.403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unilateral ureteral obstruction is a well-established experimental model of progressive renal fibrosis. We tested whether mechanical stretch and subsequent renal tubular distension might lead to renal fibrosis by first studying renal tubular epithelial cells in culture. We found that mechanical stretch induced reactive oxygen species that in turn activated the cytoplasmic proline-rich tyrosine kinase-2 (Pyk2). This kinase is abundantly expressed in tubular epithelial cells where it is activated by several stimuli. Using mice with deletion of Pyk2 we found that the expression of transforming growth factor-β1 induced by mechanical stretch in renal tubular epithelial cells was significantly reduced. The expression of connective tissue growth factor was also reduced in the Pyk2(-/-) mice. We also found that expression of connective tissue growth factor was independent of transforming growth factor-β1, but dependent on the Rho-associated coiled-coil forming protein kinase pathway. Thus, Pyk2 may be an important initiating factor in renal fibrosis and might be a new therapeutic target for ameliorating renal fibrosis.
Collapse
|
31
|
Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, Threadgill DW, Neilson EG, Harris RC. EGFR signaling promotes TGFβ-dependent renal fibrosis. J Am Soc Nephrol 2011; 23:215-24. [PMID: 22095949 DOI: 10.1681/asn.2011070645] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mechanisms by which angiotensin II (Ang II) promotes renal fibrosis remain incompletely understood. Ang II both stimulates TGFβ signaling and activates the EGF receptor (EGFR), but the relative contribution of these pathways to renal fibrogenesis is unknown. Using a murine model with EGFR-deficient proximal tubules, we demonstrate that upstream activation of EGFR-dependent ERK signaling is critical for mediating sustained TGFβ expression in renal fibrosis. Persistent activation of the Ang II receptor stimulated ROS-dependent phosphorylation of Src, leading to sustained EGFR-dependent signaling for TGFβ expression. Either genetic or pharmacologic inhibition of EGFR significantly decreased TGFβ-mediated fibrogenesis. We conclude that TGFβ-mediated tissue fibrosis relies on a persistent feed-forward mechanism of EGFR/ERK activation through an unexpected signaling pathway, highlighting EGFR as a potential therapeutic target for modulating tissue fibrogenesis.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fiore MC, Jimenez PM, Cremonezzi D, Juncos LI, García NH. Statins reverse renal inflammation and endothelial dysfunction induced by chronic high salt intake. Am J Physiol Renal Physiol 2011; 301:F263-70. [DOI: 10.1152/ajprenal.00109.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High salt intake (HS) is a risk factor for cardiovascular and kidney disease. Indeed, HS may promote blood-pressure-independent tissue injury via inflammatory factors. The lipid-lowering 3-hydroxy 3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors exert beneficial lipid-independent effects, reducing the expression and synthesis of inflammatory factors. We hypothesized that HS impairs kidney structure and function in the absence of hypertension, and these changes are reversed by atorvastatin. Four groups of rats were treated for 6 wk in metabolic cages with their diets: normal salt (NS); HS, NS plus atorvastatin and HS plus atorvastatin. We measured basal and final body weight, urinary sodium and protein excretion (UProtV), and systolic blood pressure (SBP). At the end of the experimental period, cholesterolemia, creatinine clearance, renal vascular reactivity, glomerular volume, cortical and glomerular endothelial nitric oxide synthase (eNOS), and transforming growth factor (TGF)-β1 expression were measured. We found no differences in SBP, body weight, and cholesterolemia. HS rats had increased creatinine clearence, UProtV, and glomerular volume at the end of the study. Acetylcholine-induced vasodilatation decreased by 40.4% in HS rats ( P < 0.05). HS decreased cortical and glomerular eNOS and caused mild glomerular sclerosis, interstitial mononuclear cell infiltration, and increased cortical expression of TGF-β1. All of these salt-induced changes were reversed by atorvastatin. We conclude that long-term HS induces inflammatory and hemodynamic changes in the kidney that are independent of SBP. Atorvastatin corrected all, suggesting that the nitric oxide-oxidative stress balance plays a significant role in the earlier stages of salt induced kidney damage.
Collapse
Affiliation(s)
- M. C. Fiore
- J. Robert Cade Foundation-CONICET, Córdoba
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis; and
| | - P. M. Jimenez
- Instituto Privado de Investigaciones Médicas Mercedes y Martín Ferreyra and
| | - D. Cremonezzi
- Cátedra de Histología, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
33
|
Wang D, Olman MA, Stewart J, Tipps R, Huang P, Sanders PW, Toline E, Prayson RA, Lee J, J.Weil R, Palmer CA, Gillespie GY, Liu WM, Pieper RO, Guan JL, Gladson CL. Downregulation of FIP200 induces apoptosis of glioblastoma cells and microvascular endothelial cells by enhancing Pyk2 activity. PLoS One 2011; 6:e19629. [PMID: 21602932 PMCID: PMC3094350 DOI: 10.1371/journal.pone.0019629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/11/2011] [Indexed: 12/30/2022] Open
Abstract
The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors.
Collapse
Affiliation(s)
- Dongyan Wang
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mitchell A. Olman
- Division of Pulmonary/Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry Stewart
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell Tipps
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul W. Sanders
- Department of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric Toline
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard A. Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeongwu Lee
- Department of Stem Cell and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Robert J.Weil
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Cheryl A. Palmer
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - G. Yancey Gillespie
- Neurosurgery Division, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei Michael Liu
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Russell O. Pieper
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Cell and Developmental Biology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Candece L. Gladson
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
Basnayake K, Ying WZ, Wang PX, Sanders PW. Immunoglobulin light chains activate tubular epithelial cells through redox signaling. J Am Soc Nephrol 2010; 21:1165-73. [PMID: 20558542 DOI: 10.1681/asn.2009101089] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The renal proximal tubule metabolizes circulating low-molecular-weight proteins such as Ig free light chains. In the setting of plasma cell dyscrasias, the burden of filtered protein can be very high. Endocytosis of certain nephrotoxic light chains induces H(2)O(2) production and monocyte chemoattractant protein-1 (MCP-1) release, leading to recruitment of inflammatory cells and interstitial fibrosis, but how these processes are linked mechanistically is not well understood. This study investigated the relationship between H(2)O(2) generated after light chain endocytosis by human proximal tubular (HK-2) cells and activation of c-Src, a redox-sensitive tyrosine kinase. HK-2 cells exposed to two different light chains upregulated c-Src activity, which increased the production of MCP-1. In parallel, we observed a time-dependent oxidation of c-Src. Inhibition of c-Src activity and silencing c-Src expression abrogated the light chain-induced MCP-1 response, but had no effect on H(2)O(2), indicating that production of H(2)O(2) is upstream of c-Src in the signaling cascade. Silencing megalin and cubilin expression inhibited the MCP-1 response, whereas extracellular catalase did not, indicating that endocytosis is required and that intracellular generation of reactive oxygen species activates c-Src. These data show that intracellular H(2)O(2) induced by endocytosis of monoclonal free light chains oxidizes and activates c-Src, which promotes release of MCP-1.
Collapse
|
35
|
Rosón MI, Della Penna SL, Cao G, Gorzalczany S, Pandolfo M, Toblli JE, Fernández BE. Different protective actions of losartan and tempol on the renal inflammatory response to acute sodium overload. J Cell Physiol 2010; 224:41-8. [PMID: 20232302 DOI: 10.1002/jcp.22087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this work was to study the role of local intrarenal angiotensin II (Ang II) and the oxidative stress in the up-regulation of pro-inflammatory cytokines expression observed in rats submitted to an acute sodium overload. Sprague-Dawley rats were infused for 2 h with isotonic saline solution (Control group) and with hypertonic saline solution alone (Na group), plus the AT1 receptor antagonist losartan (10 mg kg(-1) in bolus) (Na-Los group), or plus the superoxide dismutase mimetic tempol (0.5 mg min(-1) kg(-1)) (Na-Temp group). Mean arterial pressure, glomerular filtration rate, and fractional sodium excretion (FE(Na)) were measured. Ang II, NF-kappaB, hypoxia inducible factor-1 alpha (HIF-1 alpha), transforming growth factor beta1 (TGF-beta1), smooth muscle actin (alpha-SMA), endothelial nitric oxide synthase (eNOS), and RANTES renal expression was evaluated by immunohistochemistry. Ang II, NF-kappaB, and TGF-beta1 and RANTES early inflammatory markers were overexpressed in Na group, accompanied by enhanced HIF-1 alpha immunostaining, lower eNOS expression, and unmodified alpha-SMA. Losartan and tempol increased FE(Na) in sodium overload group. Although losartan reduced Ang II and NF-kappaB staining and increased eNOS expression, it did not restore HIF-1 alpha expression and did not prevent inflammation. Conversely, tempol increased eNOS and natriuresis, restored HIF-1 alpha expression, and prevented inflammation. Early inflammatory markers observed in rats with acute sodium overload is associated with the imbalance between HIF-1 alpha and eNOS expression. While both losartan and tempol increased natriuresis and eNOS expression, only tempol was effective in restoring HIF-1 alpha expression and down-regulating TGF-beta1 and RANTES expression. The protective role of tempol, but not of losartan, in the inflammatory response may be associated with its greater antioxidant effects.
Collapse
Affiliation(s)
- María I Rosón
- School of Pharmacy and Biochemistry, Department of Pathophysiology, Pharmacology and Clinical Biochemistry, University of Buenos Aires, INFIBIOC, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
36
|
Pletinck A, Consoli C, Van Landschoot M, Steppan S, Topley N, Passlick-Deetjen J, Vanholder R, Van Biesen W. Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats. Nephrol Dial Transplant 2010; 25:1688-96. [PMID: 20150166 DOI: 10.1093/ndt/gfq036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dietary salt intake has been linked to hypertension and cardiovascular disease through volume-mediated effects. Accumulating evidence points to direct negative influence of salt intake independent of volume overload, such as cardiac and renal fibrosis, mediated through transforming growth factor beta (TGF-beta). Epithelial-to-mesenchymal transition (EMT) has been implicated as a key process in chronic fibrotic diseases, such as chronic kidney disease or heart failure. The potential role of dietary salt intake on cell transdifferentiation has never been investigated. This study analysed the effect of dietary salt intake on EMT and fibrosis in the peritoneal membrane (PM) in a rat model. METHODS Twenty-eight Wistar rats were randomized to a normal salt (NS) or a high salt (HS) intake. NS and HS rats had free access to tap water or NaCl 2% as drinking water, respectively. After 2 weeks, samples of peritoneum were taken, and TGF-beta(1), Interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) mRNA expression were quantified with qRT-PCR. Fibrosis and submesothelial PM thickness were scored. EMT was evaluated using fluorescence staining with cytokeratin and alpha smooth muscle actin (alpha-SMA). RESULTS Dietary salt intake caused peritoneal fibrosis and thickening of the submesothelial layer and induced EMT as identified by colocalization of cytokeratin and alpha-SMA in cells present in the submesothelial layer. Peritoneal TGF-beta(1) and IL-6 mRNA expression were upregulated in the HS group. CONCLUSION High dietary salt intake induces EMT and peritoneal fibrosis, a process coinciding with upregulation of TGF-beta1.
Collapse
Affiliation(s)
- Anneleen Pletinck
- Renal Division, Department of Internal Medicine, Gent University Hospital, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ying WZ, Aaron K, Wang PX, Sanders PW. Potassium inhibits dietary salt-induced transforming growth factor-beta production. Hypertension 2009; 54:1159-63. [PMID: 19738156 DOI: 10.1161/hypertensionaha.109.138255] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Animal and human studies support an untoward effect of excess dietary NaCl (salt) intake on cardiovascular and renal function and life span. Recent work has promoted the concept that the endothelium, in particular, reacts to changes in dietary salt intake through a complex series of events that are independent of blood pressure and the renin-angiotensin-aldosterone axis. The cellular signaling events culminate in the intravascular production of transforming growth factor-beta (TGF-beta) and nitric oxide in response to increased salt intake. Plasticity of the endothelium is integral in the vascular remodeling consequences associated with excess salt intake, because nitric oxide serves as a negative regulator of TGF-beta production. Impairment of nitric oxide production, such as occurs with endothelial dysfunction in a variety of disease states, results in unopposed excess vascular TGF-beta production, which promotes reduced vascular compliance and augmented peripheral arterial constriction and hypertension. Persistent alterations in vascular function promote the increase in cardiovascular events and reductions in renal function that reduce life span during increased salt intake.
Collapse
Affiliation(s)
- Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama 35294-0007, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Paul W Sanders
- Division of Nephrology, Department of Medicine, 642 Lyons-Harrison Research Building, 1530 Third Ave, S, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| |
Collapse
|
41
|
Ying WZ, Aaron K, Sanders PW. Dietary salt activates an endothelial proline-rich tyrosine kinase 2/c-Src/phosphatidylinositol 3-kinase complex to promote endothelial nitric oxide synthase phosphorylation. Hypertension 2008; 52:1134-41. [PMID: 18981321 DOI: 10.1161/hypertensionaha.108.121582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although many laboratories have shown that dietary NaCl (salt) intake increases NO production in rodents and humans, the mechanism has not been uncovered. In the present study, pharmacological and dominant-negative strategies were used to show that feeding a formulated diet containing increased amounts of salt to young male Sprague-Dawley rats induced the formation of an endothelial cell-signaling complex that contained proline-rich tyrosine kinase 2, c-Src (also known as pp60(c-src)), and phosphatidylinositol 3-kinase. In the setting of a high-salt diet, proline-rich tyrosine kinase 2 served as the scaffold for c-Src-mediated phosphatidylinositol 3-kinase activation. Phosphatidylinositol 3-kinase was the upstream activator of protein kinase B (Akt), which was responsible for phosphorylation of the rat endothelial isoform of NO synthase at S1176 and thereby promoted the increase in NO production. The combined findings illustrated the crucial role for a proline-rich tyrosine kinase 2-signaling complex in the endothelial response to salt intake.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | | | | |
Collapse
|